C#版Facefusion:让你的脸与世界融为一体!-05 人脸增强

C#版Facefusion:让你的脸与世界融为一体!-05 人脸增强

目录

说明

效果

模型信息

项目

代码

下载


说明

C#版Facefusion一共有如下5个步骤:

1、使用yoloface_8n.onnx进行人脸检测
2、使用2dfan4.onnx获取人脸关键点
3、使用arcface_w600k_r50.onnx获取人脸特征值
4、使用inswapper_128.onnx进行人脸交换
5、使用gfpgan_1.4.onnx进行人脸增强

本文分享使用gfpgan_1.4.onnx实现C#版Facefusion第五步:人脸增强。

到此人脸替换就全部完成了。

效果

模型信息

Inputs
-------------------------
name:input
tensor:Float[1, 3, 512, 512]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 3, 512, 512]
---------------------------------------------------------------

项目

代码

Form5.cs

using Newtonsoft.Json;
using OpenCvSharp;
using OpenCvSharp.Extensions;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;

namespace FaceFusionSharp
{
    public partial class Form5 : Form
    {
        public Form5()
        {
            InitializeComponent();
        }

        string source_path = "";

        FaceEnhance enhance_face;

        private void button1_Click(object sender, EventArgs e)
        {
            if (pictureBox1.Image == null)
            {
                return;
            }

            pictureBox3.Image = null;
            button1.Enabled = false;
            Application.DoEvents();

            Mat source_img = Cv2.ImRead(source_path);

            List<Point2f> target_landmark_5 = new List<Point2f>();
            string target_landmark_5Str = "[{\"X\":485.602539,\"Y\":247.84906},{\"X\":704.237549,\"Y\":247.422546},{\"X\":527.5082,\"Y\":360.211731},{\"X\":485.430084,\"Y\":495.7987},{\"X\":647.741638,\"Y\":505.131042}]";
            target_landmark_5 = JsonConvert.DeserializeObject<List<Point2f>>(target_landmark_5Str);

            Mat resultimg = enhance_face.process(source_img, target_landmark_5);

            pictureBox3.Image = resultimg.ToBitmap();

            button1.Enabled = true;

        }

        private void Form1_Load(object sender, EventArgs e)
        {
            enhance_face = new FaceEnhance("model/gfpgan_1.4.onnx");

            source_path = "images/swapimg.jpg";

            pictureBox1.Image = new Bitmap(source_path);
        }
    }
}

using Newtonsoft.Json;
using OpenCvSharp;
using OpenCvSharp.Extensions;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;namespace FaceFusionSharp
{public partial class Form4 : Form{public Form4(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string startupPath = "";string source_path = "";string target_path = "";SwapFace swap_face;private void button2_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;source_path = ofd.FileName;pictureBox1.Image = new Bitmap(source_path);}private void button3_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox2.Image = null;target_path = ofd.FileName;pictureBox2.Image = new Bitmap(target_path);}private void button1_Click(object sender, EventArgs e){if (pictureBox1.Image == null || pictureBox2.Image == null){return;}pictureBox3.Image = null;button1.Enabled = false;Application.DoEvents();Mat source_img = Cv2.ImRead(source_path);Mat target_img = Cv2.ImRead(target_path);List<float> source_face_embedding = new List<float>();string source_face_embeddingStr = "[1.27829754,-0.843142569,-0.06048897,1.217865,0.05804708,-0.922453,-0.3946921,0.354699373,-0.463791549,-0.2642475,0.105297916,-0.7907695,-0.356749445,0.3069641,-0.8946595,0.170947254,1.44868386,0.759071946,-0.269189358,-0.5085244,-0.9652322,-1.04884982,0.9766977,1.07973742,0.0248709321,-0.4092621,-0.6058987,-0.848997355,-1.03252912,-0.9534966,-0.9342567,0.9198751,0.4637577,-0.12646234,-0.959137,0.215259671,0.202829659,0.386633456,-1.06374037,0.9076231,0.4178339,-0.307011932,0.175406933,-0.8017055,0.0265568867,-0.0304557681,0.381101757,-0.613952756,-0.446841478,-0.02897077,-1.83899212,-0.303131342,-0.4501938,-0.156551331,0.463839,2.24176764,-1.44412839,0.07924119,-0.478609055,-0.07747641,-0.227516085,-0.6149595,0.247599155,0.7158034,-0.989331543,0.336038023,-0.260178417,-0.736905932,0.6045121,-0.5151367,0.0177601129,0.2451405,-0.4607039,-0.9134231,-0.9179117,0.0190813988,-0.0810294747,-0.7007484,0.05699861,0.794708,0.189010963,-0.6672335,-0.0455337241,0.103580572,0.5497576,0.995198667,-0.957392335,0.7217704,-0.359451652,0.4541813,-0.230636075,-0.547900736,-0.5641564,1.813883,-0.7031114,0.00149327889,-1.0309937,-0.103514418,0.4285911,0.0026740334,-0.661017954,-0.6178541,0.0246957541,-0.350938439,-0.852270365,0.388598084,-0.8937982,0.472674131,0.522144735,0.799444556,0.2309232,-1.08995068,-1.442019,-1.91144061,-0.7164683,-0.6465371,0.760996938,-0.420196772,-1.26484954,-0.09949406,-0.151404992,-0.61891,-0.743678153,0.00494776666,0.20202066,-1.08374822,0.0426106676,-0.955584645,0.09357526,-0.766932249,-0.507255733,0.04017231,0.289033234,0.4830236,-0.262155324,-0.7767182,0.179391116,0.320753068,0.6572064,0.7744924,-0.880204558,-0.9739305,0.475606382,-0.0342647,0.505723536,-0.4457739,-0.6569923,-0.9067787,0.4584064,0.107994281,-0.414298415,-0.524813831,-1.03696835,-0.298128754,0.94455415,0.578622341,0.4745661,-0.5985398,0.419998139,-0.0477161035,-0.805623531,1.22836232,-0.996593058,-0.449891567,0.252311468,-1.76361179,0.204254434,-1.17584419,0.0494393073,0.2145797,-1.75655448,0.548028231,-0.3806628,0.8410565,-1.35499954,0.140949339,0.591043949,0.0298345536,0.12179298,-0.7399838,-0.06857535,0.23784174,-0.690012932,-0.147698313,-0.911997,0.680546463,0.1976757,0.9299851,-0.362830281,0.318164885,-0.0501053035,-0.575328946,0.129042387,1.08131313,-0.8875152,0.559377253,1.11513853,1.12112761,-0.123456843,1.202241,-0.6952012,-0.557888448,0.540348053,-0.521905243,-0.138044775,-0.550300062,-2.14852977,-1.39409924,0.104200155,0.839064062,0.281964779,-0.202217847,-0.480831623,1.08107018,0.7986622,-0.2772641,-1.57516074,-0.5475309,0.25043875,1.18010235,0.6972798,0.1838305,-0.151265711,0.5103554,-0.883137345,-1.34374917,0.8238913,0.373506874,-0.506602466,1.12764454,-0.00945023447,-0.0426563546,-0.671316266,0.252278179,-0.7500384,-0.858895063,-0.7738279,0.489211917,0.7337883,-0.5536902,-0.710563064,0.533735633,-0.267439723,-0.08325979,-0.9056747,1.1245147,1.34881878,0.4010091,-0.150992,-0.413697422,0.876372457,0.864017546,0.7379206,-0.6320749,-0.419689536,0.815245,-0.118938759,0.683474243,-0.6155008,-0.6915616,-0.6239222,-0.583537,0.110704079,-0.302822769,0.3435551,-1.17488611,-1.01326025,0.32583034,0.381028563,0.6072552,-0.3146818,0.371741,0.187356383,0.1772259,-1.85920739,-0.504295051,-0.8785569,0.13697955,-1.11337721,-0.01934576,-0.4575694,-1.15144432,1.89849365,-0.1349,-0.6015017,1.42154992,-0.716133237,-0.153033137,0.76939106,-0.07523422,-0.6604878,-1.48084462,0.2875409,-1.12858534,-0.5869999,-0.614957333,-1.463373,-0.6721835,-0.8257968,-0.8025705,-0.05431364,0.692136168,1.29751766,0.488991469,1.05194938,0.270692348,-0.9085438,-0.802716434,0.309471458,0.448509455,0.6789823,-0.5252856,-0.435200185,0.225147322,-0.07077629,1.345535,0.387805045,0.5236529,-0.764065266,0.0691546053,0.250542849,0.1982695,0.149731383,0.845968544,-0.566032946,0.654774547,0.07547854,0.8683217,1.290068,-0.152055,-0.803692758,-0.152090073,0.558371961,0.157687336,0.839655459,1.01181054,-0.5604553,-1.40365577,-0.0167575851,0.933371544,0.078309074,-0.399255246,1.34938979,-0.119476132,0.432984,-0.300964683,0.226254016,0.012853846,0.02476523,-1.31901956,-0.127706885,-0.6488211,-0.7127493,0.749162853,-0.893739045,-0.175434247,-0.335470438,1.18117,0.492022336,1.23091626,0.406947345,-0.3563189,0.8080479,-0.426982045,-0.739384949,-0.551647067,0.1390677,0.20869185,-0.0231712535,-0.214353234,-0.174618453,0.0277073532,-0.241463527,0.9559633,0.262964159,-0.851067245,-0.03425724,0.08168835,0.3511026,-0.466765344,-0.134850383,0.08376661,1.48223615,-1.61568224,1.56967258,-0.391382277,-1.56669474,-1.37852716,0.124903291,-0.3481225,-1.23350728,-0.6862239,0.103708193,1.10754442,0.057642363,-0.321929336,-0.2979336,1.83333886,-0.904876,-0.3975336,-1.07201684,0.458736777,-0.4938286,-0.763312,-1.83132732,-0.748038769,0.475634664,0.297061145,-0.2685745,-0.0666656047,0.4759698,-1.03472865,-0.406694651,-0.4281593,-0.9864616,-0.300786138,-0.12080624,0.631304443,-0.153151155,1.42306745,-0.3394043,-0.5216301,0.9424391,0.407645643,-0.240343288,1.197725,0.62536,-0.756885648,0.510467649,0.4989131,0.0761876553,0.10052751,0.105433822,-0.167532444,0.8946594,-0.521723866,-0.580115259,-1.10355973,-0.418604881,0.163044125,0.402529866,0.385285437,0.50639534,1.8232342,0.343647063,0.8509874,-0.7942822,0.6470037,0.00863461,0.4432856,0.7659954,-0.9592937,0.5787302,-0.496584,-1.267057,-0.8610047,0.0339910947,-0.145451844,-1.28451169,-0.193874747,0.5775311,-0.537475049,0.197097167,-1.57822132,0.257652581,0.163942844,1.132039,0.108674683,-0.185894847,0.50037,0.07695928,-0.420834035,-0.3034144,0.162115663,-0.45547688,-0.295086831,-0.0236618519,0.6726147,0.764866352,0.35937,-0.330009639,0.151511714,-0.533296764,-1.08290327,0.230814755,0.06941691,-0.354930282,0.5848398,-1.68328464,-0.476737082,-1.61717749,1.00269365,-1.809915,0.6276051,-0.848550439,0.288911045,-0.4656973,0.5820218,0.851961,0.01968059,0.03812991,0.33123517,-0.349143356,0.16208598,-1.4402169,-0.6137045,-0.3490757,0.2402328,-1.21176457,0.119369812,-0.896918654,0.1288858]";source_face_embedding = JsonConvert.DeserializeObject<List<float>>(source_face_embeddingStr);List<Point2f> target_landmark_5 = new List<Point2f>();string target_landmark_5Str = "[{\"X\":485.602539,\"Y\":247.84906},{\"X\":704.237549,\"Y\":247.422546},{\"X\":527.5082,\"Y\":360.211731},{\"X\":485.430084,\"Y\":495.7987},{\"X\":647.741638,\"Y\":505.131042}]";target_landmark_5 = JsonConvert.DeserializeObject<List<Point2f>>(target_landmark_5Str);Mat swapimg = swap_face.process(target_img, source_face_embedding, target_landmark_5);Cv2.ImWrite("swapimg.jpg", swapimg);pictureBox3.Image = swapimg.ToBitmap();button1.Enabled = true;}private void Form1_Load(object sender, EventArgs e){swap_face = new SwapFace("model/inswapper_128.onnx");target_path = "images/target.jpg";source_path = "images/source.jpg";pictureBox1.Image = new Bitmap(source_path);pictureBox2.Image = new Bitmap(target_path);}}
}

FaceEnhance.cs

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Linq;namespace FaceFusionSharp
{internal class FaceEnhance{float[] input_image;int input_height;int input_width;List<Point2f> normed_template;float FACE_MASK_BLUR = 0.3f;int[] FACE_MASK_PADDING = new int[4] { 0, 0, 0, 0 };SessionOptions options;InferenceSession onnx_session;public FaceEnhance(string modelpath){input_height = 512;input_width = 512;options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(modelpath, options);//model_path 为onnx模型文件的路径//在这里就直接定义了,没有像python程序里的那样normed_template = TEMPLATES.get(template) * crop_sizenormed_template = new List<Point2f>();normed_template.Add(new Point2f(192.98138112f, 239.94707968f));normed_template.Add(new Point2f(318.90276864f, 240.19360256f));normed_template.Add(new Point2f(256.63415808f, 314.01934848f));normed_template.Add(new Point2f(201.26116864f, 371.410432f));normed_template.Add(new Point2f(313.0890496f, 371.1511808f));}void preprocess(Mat srcimg, List<Point2f> face_landmark_5, ref Mat affine_matrix, ref Mat box_mask){Mat crop_img = new Mat();affine_matrix = Common.warp_face_by_face_landmark_5(srcimg, crop_img, face_landmark_5, normed_template, new Size(512, 512));int[] crop_size = new int[] { crop_img.Cols, crop_img.Rows };box_mask = Common.create_static_box_mask(crop_size, FACE_MASK_BLUR, FACE_MASK_PADDING);Mat[] bgrChannels = Cv2.Split(crop_img);for (int c = 0; c < 3; c++){bgrChannels[c].ConvertTo(bgrChannels[c], MatType.CV_32FC1, 1 / (255.0 * 0.5), -1.0);}Cv2.Merge(bgrChannels, crop_img);foreach (Mat channel in bgrChannels){channel.Dispose();}input_image = Common.ExtractMat(crop_img);crop_img.Dispose();}internal Mat process(Mat target_img, List<Point2f> target_landmark_5){Mat affine_matrix = new Mat();Mat box_mask = new Mat();preprocess(target_img, target_landmark_5, ref affine_matrix, ref box_mask);Tensor<float> input_tensor = new DenseTensor<float>(input_image, new[] { 1, 3, input_height, input_width });List<NamedOnnxValue> input_container = new List<NamedOnnxValue>{NamedOnnxValue.CreateFromTensor("input", input_tensor)};var ort_outputs = onnx_session.Run(input_container).ToArray();float[] pdata = ort_outputs[0].AsTensor<float>().ToArray();int out_h = 512;int out_w = 512;int channel_step = out_h * out_w;for (int i = 0; i < pdata.Length; i++){pdata[i] = (pdata[i] + 1) * 0.5f;if (pdata[i] < -1){pdata[i] = -1;}if (pdata[i] > 1){pdata[i] = 1;}pdata[i] = pdata[i] * 255.0f;if (pdata[i] < 0){pdata[i] = 0;}if (pdata[i] > 255){pdata[i] = 255;}}float[] temp_r = new float[channel_step];float[] temp_g = new float[channel_step];float[] temp_b = new float[channel_step];Array.Copy(pdata, temp_r, channel_step);Array.Copy(pdata, channel_step, temp_g, 0, channel_step);Array.Copy(pdata, channel_step * 2, temp_b, 0, channel_step);Mat rmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_r);Mat gmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_g);Mat bmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_b);Mat result = new Mat();Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result);result.ConvertTo(result, MatType.CV_8UC3);float[] box_mask_data;box_mask.GetArray<float>(out box_mask_data);int cols = box_mask.Cols;int rows = box_mask.Rows;MatType matType = box_mask.Type();for (int i = 0; i < box_mask_data.Length; i++){if (box_mask_data[i] < 0){box_mask_data[i] = 0;}if (box_mask_data[i] > 1){box_mask_data[i] = 1;}}box_mask = new Mat(rows, cols, matType, box_mask_data);Mat paste_frame = Common.paste_back(target_img, result, box_mask, affine_matrix);Mat dstimg = Common.blend_frame(target_img, paste_frame);return dstimg;}}
}

下载

源码下载

其他

C#版Facefusion ,换脸器和增强器-CSDN博客

C#版Facefusion:让你的脸与世界融为一体!-01 人脸检测-CSDN博客

C#版Facefusion:让你的脸与世界融为一体!-02 获取人脸关键点-CSDN博客

C#版Facefusion:让你的脸与世界融为一体!-03 获取人脸特征值-CSDN博客

C#版Facefusion:让你的脸与世界融为一体!-04 人脸替换-CSDN博客

C#版Facefusion:让你的脸与世界融为一体!-05 人脸增强-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/1753.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于MNIST的手写数字识别

上次我们基于CIFAR-10训练一个图像分类器&#xff0c;梳理了一下训练模型的全过程&#xff0c;并且对卷积神经网络有了一定的理解&#xff0c;我们再在GPU上搭建一个手写的数字识别cnn网络&#xff0c;加深巩固一下 步骤 加载数据集定义神经网络定义损失函数训练网络测试网络 …

小扎万字深度访谈:最强开源大模型Llama 3发布,Meta的AGI路径和开源哲学

今天Meta发布了史上最强开源大模型Llama 3&#xff0c;一口气发布了 8B 和 70B 2个预训练和指令微调模型&#xff0c;对比同级别的参数模型&#xff0c;性能上均达到了最佳。 此外&#xff0c;Meta还发布了基于Llama 3的AI助手Meta AI&#xff0c;可以在Facebook、Instagram、W…

一举颠覆Transformer!最新Mamba结合方案刷新多个SOTA,单张GPU即可处理140k

还记得前段时间爆火的Jamba吗&#xff1f; Jamba是世界上第一个生产级的Mamba大模型&#xff0c;它将基于结构化状态空间模型 (SSM) 的 Mamba 模型与 transformer 架构相结合&#xff0c;取两种架构之长&#xff0c;达到模型质量和效率兼得的效果。 在吞吐量和效率等关键衡量指…

基于函数计算FC3.0 部署AI数字绘画stable-diffusion自定义模型

基于函数计算FC3.0 部署AI数字绘画stable-diffusion自定义模型 部署AI数字绘画stable-diffusion曲线救国授权github账号 部署ffmpeg-app-v3总结 在讲述了函数计算FC3.0和函数计算FC2.0的操作界面UI改版以及在函数管理、函数执行引擎、自定义域名、函数授权及弹性伸缩规则方面进…

【管理咨询宝藏82】麦肯锡某化工企业战略咨询报告

本报告首发于公号“管理咨询宝藏”&#xff0c;如需阅读完整版报告内容&#xff0c;请查阅公号“管理咨询宝藏”。 【管理咨询宝藏82】麦肯锡某化工企业战略咨询报告 【格式】PPT版本&#xff0c;可以编辑 【关键词】战略咨询、MBB、业务规划 【核心观点】 - 打造面向客户的…

ROS2 仿真学习02 Gazebo导入官方示例模型

1.下载模型 git clone https://gitee.com/bingda-robot/gazebo_models.git将gazebo_models拖到到.gazebo当中&#xff08;如果没看到.gazebo文件请按住CTRLh&#xff09; 2.添加模型到gazebo的Insert 这就将官方示例的模型都导入到Gazebo 了 随便试试一个模型

SLS 查询新范式:使用 SPL 对日志进行交互式探索

作者&#xff1a;无哲 引言 在构建现代数据和业务系统的过程中&#xff0c;可观测性已经变得至关重要&#xff0c;日志服务&#xff08;SLS&#xff09;为 Log/Trace/Metric 数据提供了大规模、低成本、高性能的一站式平台服务&#xff0c;并提供数据采集、加工、投递、分析、…

海外平台运营为什么需要静态住宅IP?

在世界经济高度全球化的今天&#xff0c;许多企业家和电子商务卖家纷纷转向海外平台进行业务扩展。像亚马逊、eBay这样的跨国电商平台为卖家提供了巨大的机会&#xff0c;来接触到世界各地的顾客。然而&#xff0c;在这些平台上成功运营&#xff0c;尤其是维持账号的健康和安全…

脚本开发与自动化运维

shell脚本开发 grep搜索工具 参数&#xff1a; -A<显示行数>&#xff1a;-A NUM, --after-context NUM&#xff0c;除了显示符合范本样式的那一行之 外&#xff0c;并显示该行之后的内容。 -B<显示行数>&#xff1a;--before-context NUM&#xff0c;除了显示…

使用51单片机控制T0和T1分别间隔1秒2秒亮灭逻辑

#include <reg51.h>sbit LED1 P1^0; // 设置LED1灯的接口 sbit LED2 P1^1; // 设置LED2灯的接口unsigned int cnt1 0; // 设置LED1灯的定时器溢出次数 unsigned int cnt2 0; // 设置LED2灯的定时器溢出次数// 定时器T0 void Init_Timer0() {TMOD | 0x01;; // 定时器…

数据分析师平均薪资18322,这11个行业需求量最大!

2024年&#xff0c;是一个被数据深刻影响的时代。数据&#xff0c;如同无形的燃料&#xff0c;驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据&#xff0c;到制造业的传感器、金融交易、医疗病历等各个领域的海量信息&#xff0c;数据的量级每年都在呈指数级增长…

Linux 内核设备树 ranges属性

今天有人问了我一下ranges属性&#xff0c;找了相关资料确认后&#xff0c;记录一下&#xff1a; 参考资料链接&#xff1a;让你完全理解linux内核设备树ranges属性地址转换 - vkang - 博客园 (cnblogs.com) ranges属性定义如下&#xff1a; ranges < local_address pa…

SAP专家级实施商解读:SAP S/4HANA Cloud(PCE私有云) 的五大误解

五个关于SAP S/4HANA Cloud&#xff08;PCE私有云&#xff09;的重要疑问&#xff1a; ■ SAP太贵了&#xff1f; ■ SAP S/4HANA Cloud 只适用于大型企业&#xff1f; ■ ERP项目&#xff0c;尤其是 SAP 解决方案&#xff0c;太耗时了&#xff1f; ■ ERP项目/云项目没有优势&…

JAVA学习笔记29(集合)

1.集合 ​ *集合分为&#xff1a;单列集合、双列集合 ​ *Collection 接口有两个重要子接口 List Set&#xff0c;实现子类为单列集合 ​ *Map接口实现子类为双列集合&#xff0c;存放的King–Value ​ *集合体系图 1.1 Collection接口 1.接口实现类特点 1.collection实现…

PL_to_PS中断传输数据

PL_to_PS中断传输数据 实验功能&#xff1a;将PL端的数据存入BRAM&#xff0c;然后在PS端读出数据&#xff0c;用串口打印。通过中断来触发 参考文章&#xff1a; https://www.cnblogs.com/fhyfhy/p/11760986.html [ZYNQ_PS与PL通过BRAM交互&#xff08;三&#xff1a;PSPL读…

MyBatis 框架学习(II)

MyBatis 框架学习(II) 文章目录 MyBatis 框架学习(II)1. 介绍2. 准备&测试2.1 配置数据库连接字符串和MyBatis2.2 编写持久层代码 3. MyBatis XML基础操作3.1 Insert 操作3.2 Delete 操作3.3 Update 操作3.4 Select 操作 4. #{} 与 ${}的使用5. 动态SQL操作5.1 < if >…

去除图像周围的0像素,调整大小

在做分割任务时&#xff0c;经常需要处理图像&#xff0c;如果图像周围有一圈0像素&#xff0c;需要去除掉&#xff0c;重新调整大小 数组的处理 如果图像的最外一圈为0&#xff0c;我们将图像最外圈的图像0去除掉。 import numpy as npdef remove_outer_zeros(arr):# 获取数…

纠正对CAN的错误认识

STM32CUBEMX系列——CAN通讯的配置_stm32cubemx 配置103 can-CSDN博客 STM32之CAN通信_stm32 can通信-CSDN博客 在回环模式下&#xff0c;发送的数据帧会在控制器内部被立即接收&#xff0c;而不会通过总线传播到其他节点。这种模式可以确保在没有其他节点干扰的情况下&#…

AI边缘计算盒子+ThingSense管理平台,推动明厨亮灶智慧监管新篇章

背景随着“互联网”时代的浪潮汹涌而至&#xff0c;国家及各地政府纷纷在“十四五”规划中明确指出&#xff0c;强化食品安全管理&#xff0c;利用技术手段实现智慧监管是刻不容缓的任务。为此&#xff0c;各地正加速推进“互联网明厨亮灶”的建设步伐&#xff0c;实现系统对接…

C# 使用 ThoughtWorks.QRCode 生成二维码

目录 关于 ThoughtWorks.QRCode 开发运行环境 方法设计 代码实现 调用示例 Logo图标透明化 小结 关于 ThoughtWorks.QRCode 二维码是用某种特定的几何图形按一定规律在平面分布的、黑白相间的、记录数据符号信息的图形&#xff0c;在应用程序开发中也被广泛使用&#x…