【MATLAB源码-第190期】基于matlab的32QAM系统相位偏移估计EOS算法仿真,对比补偿前后的星座图误码率。

操作环境:

MATLAB 2022a

1、算法描述

1. 引言

M-QAM调制技术的重要性

现代通信系统追求的是更高的数据传输速率和更有效的频谱利用率。M-QAM调制技术,作为一种高效的调制方案,能够通过在相同的带宽条件下传输更多的数据位来满足这一需求。M-QAM通过调整信号的幅度和相位来编码信息,使得每个符号能够携带多个比特信息,从而大幅度提高了数据传输速率。

相偏的影响

然而,M-QAM系统的性能受到多种因素的影响,其中相偏是一个重要的技术挑战。相偏可以由多种原因引起,包括硬件缺陷、信号传输过程中的失真等。它会导致接收信号的相位与预期的相位出现偏差,从而使得解调后的数据出现错误,降低系统的传输质量和可靠性。

EOS算法的引入

为了解决相偏问题,EOS算法被提出并应用于相偏的估计和校正。EOS算法能够在不需要先验信息的情况下,通过分析接收信号的统计特性来估计相偏角度。这种盲相位搜索方法为M-QAM系统的相偏校正提供了一种有效的解决方案。

2. M-QAM调制技术概述

基本原理

M-QAM调制通过在两个正交的载波上调制信号,同时利用幅度和相位的变化来编码信息。这种调制技术能够在保持带宽不变的情况下传输大量数据,因为它将信息编码到每个符号的幅度和相位上,而每个符号可以表示多个比特。随着M值的增加,系统的数据传输速率也随之增加,但相应地,系统对信噪比的要求也更高,因为符号间的区分度减小。

星座图

M-QAM的星座图是一个用于表示所有可能符号的图形,其中每个符号都由其幅度和相位唯一确定。在理想条件下,这些符号在星座图上均匀分布。然而,在实际通信系统中,由于噪声、相偏等因素的影响,接收到的符号可能会从其理想位置偏离,导致符号判决错误。

3. 相偏的来源与影响

相偏产生的原因

相偏可以由多种原因引起,包括但不限于:

  • 硬件缺陷,如振荡器的不稳定性;

  • 信号传输过程中的失真,如非线性失真、多径传播效应;

  • 环境因素,如温度变化导致的设备性能波动。

相偏对系统性能的影响

相偏会导致接收信号的相位与发送信号的相位不匹配,从而使得解调后的数据出现错误。在M-QAM调制系统中,即使是较小的相偏也可能导致严重的符号错误,特别是在高阶M-QAM系统中,符号间的距离更小,系统对相偏更为敏感。

4. EOS算法原理

算法概述

EOS算法通过分析接收信号的四次统计量来估计相偏角度。该算法不依赖于传输的数据或额外的相位参考信号,因此被称为盲相位搜索方法。通过计算接收信号的四次幂和二次幂统计量,并利用这些统计量之间的关系,EOS算法能够估计出相偏角度。

数学模型

EOS算法的数学模型基于接收信号的高阶统计特性。算法首先计算接收信号的四次幂和二次幂统计量,然后通过这些统计量计算出与相偏相关的参数。最后,利用这些参数通过数学推导估计出相偏角度。

算法步骤
  1. 计算接收信号的四次幂和二次幂统计量;

  2. 根据统计量计算与相偏相关的参数;

  3. 利用相关参数估计相偏角度;

  4. 根据估计的相偏角度对信号进行校正。

5. EOS算法的MATLAB实现

信号生成与相偏模拟

使用MATLAB代码生成M-QAM信号,并模拟相偏的影响。这一步骤涉及到信号的调制、相偏的添加以及信号的噪声模拟。

相偏估计与校正

提供MATLAB代码实现EOS算法的核心步骤,包括相偏的估计和信号的校正。代码应包含详细的注释,解释每一步的功能和目的。

6. 性能评估

仿真设置

描述用于评估EOS算法性能的仿真设置,包括信噪比范围、相偏大小、以及M-QAM调制阶数等参数。

结果分析

展示EOS算法在不同条件下的性能,包括相偏估计的准确性、校正后信号的质量以及系统的误码率等。使用图表和图形直观地展示仿真结果,并对结果进行分析和讨论。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

      V

点击下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/1698.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云打印怎么下单?网上云打印下单教程来了!

近些年来,随着移动互联网的发展,云打印也越来越火热。如今有越来越多的用户选择云打印服务。但是现在仍有很多不知道如何下单。那么云打印怎么下单呢?今天小易就来和大家介绍一下网上云打印的下单教程。 云打印怎么下单?网上云打印…

MYSQL45道练习题---持续更新中

来源: Mysql_45道练习题 - 简书 共四张表: ①、course表: CId:课程id Cname:课程名称 TId:老师id ②、student学生表: SId:学生id Sname:…

【Linux】进程的程序地址空间①

目录 前言: 1.什么是地址空间 区域划分 页表: 2.为什么要有地址空间 2.1 进程与内存解耦合 2.2安全 3.凭什么说进程具有独立性: 4.用地址空间解释一下申请内存 前言: 在C语言中,我们说我们将内存分为,栈区…

vue3组件之间的传参

1、父传子 defineProps 父组件 <script setup>import { reactive } from vue;import Children from ./children.vue;const parentProps reactive({name:zhangsan,age:20})</script><template><div>这是父组件</div><div>子组件:<Chil…

探索大型语言模型(LLM)在人类性格个性评估(MBTI)中的前景与应用

1.概述 大型语言模型&#xff08;LLM&#xff09;如ChatGPT在各个领域的应用确实越来越广泛&#xff0c;它们利用庞大的数据集进行训练&#xff0c;以模拟人类的语言理解和生成能力。这些模型在提供信息、解答问题、辅助决策等方面表现出了强大的能力&#xff0c;但它们并不具…

AI大模型之路 第二篇: Word2Vec介绍

你好&#xff0c;我是郭震 今天我来总结大模型第二篇&#xff0c;word2vec&#xff0c;它是大模型的根基&#xff0c;一切NLP都会用到它。 Word2Vec Word2Vec 是一种流行的自然语言处理&#xff08;NLP&#xff09;工具&#xff0c;它通过将词汇表中的每个单词转换成一个独特的…

优先级队列(概念理解/底层模拟/时间复杂度分析)

目录 1.概念理解 2.优先级队列的底层模拟 2.1堆的概念 2.2优先队列的模拟实现 2.2.1把Heap类定义好 2.2.2初始化堆 2.2.3创建大堆 1.思路 以此二叉树为例&#xff1a; 图文理解&#xff1a; 2.思路转化为代码 2.2.4堆操作之offer&#xff08;进队列&#xff09; 1…

机器学习-10-基于paddle实现神经网络

文章目录 总结参考本门课程的目标机器学习定义第一步&#xff1a;数据准备第二步&#xff1a;定义网络第三步&#xff1a;训练网络第四步&#xff1a;测试训练好的网络 总结 本系列是机器学习课程的系列课程&#xff0c;主要介绍基于paddle实现神经网络。 参考 MNIST 训练_副…

【Node.js】01 —— fs模块全解析

&#x1f525;【Node.js】 fs模块全解析 &#x1f4e2; 引言 在Node.js开发中&#xff0c;fs模块犹如一把万能钥匙&#xff0c;解锁着整个文件系统的操作。从读取文件、写入文件、检查状态到目录管理&#xff0c;无所不能。接下来&#xff0c;我们将逐一揭开fs模块中最常用的那…

vue ant form validate如何对数组下的表单校验

问题 使用Ant Design Vue校验表单时&#xff0c;通过validateFields&#xff0c;但是如何一个数组内部的校验呢&#xff1f; 效果图&#xff1a; 实现方式&#xff1a; 通过 v-for 循环渲染:name"[]"实现&#xff0c;我们直接看代码。 <template><a-for…

Spring Boot中JUnit 4与JUnit 5的如何共存

文章目录 前言一、先上答案二、稍微深入了解2.1 maven-surefire-plugin是什么2.2 JUnit4和JUnit5有什么区别2.2.1 不同的注解2.2.2 架构 前言 在maven项目中&#xff0c;生成单测时是否有这样的疑问&#xff1a;该选JUnit4还是JUnit5&#xff1f;在执行 mvn test 命令时有没有…

三、SpringBoot整合MyBatis

本章节主要描述MyBatis的整合&#xff0c;以及使用mybatis-generator-maven-plugin生成代码骨架&#xff0c;源码&#xff1a; jun/learn-springboot - Gitee.com 一、首先建数据库 本示例用的是MySQL8.0.23&#xff0c;建表t_goods、t_orders&#xff0c;略... 二、goods模块…

Java | Leetcode Java题解之第36题有效的数独

题目&#xff1a; 题解&#xff1a; class Solution {public boolean isValidSudoku(char[][] board) {int[][] rows new int[9][9];int[][] columns new int[9][9];int[][][] subboxes new int[3][3][9];for (int i 0; i < 9; i) {for (int j 0; j < 9; j) {char …

随机森林原理及应用

目录 一、随机森林原理、优点、应用场景 1.1基本原理 1.2主要优点 1.3使用场景 二、具体实例 一、随机森林原理、优点、应用场景 随机森林是一种流行且强大的机器学习算法&#xff0c;属于集成学习方法的一部分&#xff0c;主要用于分类和回归任务。它通过组合多个决策树…

SSTV音频转图片

SSTV工具有很多&#xff0c;这里使用RX-SSTV慢扫描工具 下载安装 RX-SSTV解码软件 下载地址&#xff1a;https://www.qsl.net/on6mu/rxsstv.htm 一直点下一步&#xff0c;安装成功如下图: 虚拟声卡e2eSoft 由于SSTV工具是根据音频传递图片信息&#xff0c;正常解法需要一…

在【laravel框架】学习中遇到的常见的问题以及解决方法

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…

Marching Cubes算法

Marching Cubes算法 1. 简介2. 算法原理的理解2.1 如何找到面经过的这些小块(六面体)&#xff1f;2.2 找到后&#xff0c;如何又进一步的找到面与这些小块(六面体)的交点&#xff1b;2.3 这些交点按照怎么的拓扑连接关系连接&#xff0c;是怎么操作的&#xff1f; 3. 总结4. 参…

金融时报:波场亮相哈佛大学并举办TRON Builder Tour活动

近日,波场TRON作为顶级白金赞助商出席哈佛区块链会议并成功举办TRON Builder Tour哈佛站活动,引发海外媒体热议。美联社、金融时报、Cointelegraph等国际主流媒体及加密知名媒体均对此给予了高度评价,认为本次大会对TRON Builder Tour活动具有里程碑意义,彰显了波场TRON致力于促…

mysql基础5——设置主键

业务字段尽量不要用做主键 删除主键&#xff0c;只是主键被删除&#xff0c;字段还存在 alter table demo.membermaster drop primary key; 添加一个字段设置为主键并给主键添加自增约束 alter table demo.membermaster add column id int primary key auto_increment; 自增…

Gitea 简单介绍、用法以及使用注意事项!

Gitea 是一个轻量级的代码托管解决方案&#xff0c;它提供了一个简单而强大的平台&#xff0c;用于托管和协作开发项目。基于 Go 语言编写&#xff0c;与 GitLab 和 GitHub Enterprise 类似&#xff0c;但专为自托管而设计。以下是对 Gitea 的详细介绍&#xff0c;包括常用命令…