目录
基于pytorch的中文语言模型预训练:https://github.com/zhusleep/pytorch_chinese_lm_pretrain/tree/master
sentence_emb.py
search_faiss_robert768.py
faiss_index.py
gen_vec_save2_faiss.py
基于pytorch的中文语言模型预训练:https://github.com/zhusleep/pytorch_chinese_lm_pretrain/tree/master
sentence_emb.py
#from transformers import BertTokenizer, BertModel
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#
## First we initialize our model and tokenizer:
#tokenizer = BertTokenizer.from_pretrained('./result')
#model = BertModel.from_pretrained('./result')def split_batch(init_list, batch_size):groups = zip(*(iter(init_list),) * batch_size)end_list = [list(i) for i in groups]count = len(init_list) % batch_sizeend_list.append(init_list[-count:]) if count != 0 else end_listreturn end_list"""
param: sentence list
return: embeddings
"""
def encode(sentences, tokenizer, model):tokens = {'input_ids': [], 'attention_mask': []}data_num = len(sentences)for sentence in sentences:# 编码每个句子并添加到字典new_tokens = tokenizer.encode_plus(str(sentence), max_length=128,truncation=True, padding='max_length',return_tensors='pt')tokens['input_ids'].append(new_tokens['input_ids'][0])tokens['attention_mask'].append(new_tokens['attention_mask'][0])# 将张量列表重新格式化为一个张量tokens['input_ids'] = torch.stack(tokens['input_ids']).to(device)tokens['attention_mask'] = torch.stack(tokens['attention_mask']).to(device)model.eval()# We process these tokens through our model:with torch.no_grad():#添加这行代码outputs = model(**tokens)# odict_keys(['last_hidden_state', 'pooler_output'])# The dense vector representations of our text are contained within the outputs 'last_hidden_state' tensor, which we access like so:embeddings = outputs[0]# To perform this operation, we first resize our attention_mask tensor:attention_mask = tokens['attention_mask']# attention_mask.shapemask = attention_mask.unsqueeze(-1).expand(embeddings.size()).float()# mask.shape# 上面的每个向量表示一个单独token的掩码现在每个token都有一个大小为768的向量,表示它的attention_mask状态。然后将两个张量相乘:masked_embeddings = embeddings * mask# masked_embeddings.shape# torch.Size([2, 128, 768])torch.Size([data_num, 128, 768])summed = torch.sum(masked_embeddings, 1)summed_mask = torch.clamp(mask.sum(1), min=1e-9)mean_pooled = summed / summed_mask# print(mean_pooled)# print(type(mean_pooled))return mean_pooled#sentences = [
# "你叫什么名字?",
# "你的名字是什么?",
# "你的名字是什么?",
# "你的名字是什么?",
# "你的名字是什么?",
# "你的名字是什么?",
# "你的名字是什么?",
# "你的名字是什么?",
# "你的名字是什么?",
#]
#sb = split_batch(sentences, 2)
#embs = []
#for batch in sb:
# emb = encode(batch)
# embs += emb
#
#print(embs)
#print(len(embs))
search_faiss_robert768.py
import pickle
from faiss_index import faissIndex
import pandas as pd
import numpy as np
# from sentence_transformers import SentenceTransformer
# Download model
# model = SentenceTransformer('paraphrase-MiniLM-L6-v2/')
from sentence_emb import encodefrom transformers import BertTokenizer, BertModel
import torch
# First we initialize our model and tokenizer:
tokenizer = BertTokenizer.from_pretrained('./result')
model = BertModel.from_pretrained('./result').cuda()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# faiss_index_path = "faiss_index384.pkl"
faiss_index_path = "faiss_index_robert.pkl"symptom_name_df = pd.read_csv("col2.csv")# 从本地加载faiss_index模型
def load_faiss_index(var_faiss_model_path):# 从本地加载faiss_index模型# with open('strategy/semantic_recall/model/tt.txt', 'r') as f:# print(f.readlines())with open(var_faiss_model_path, mode='rb', errors=None) as fr:index = pickle.load(fr, encoding='ASCII', errors='ASCII')return indexdef symptom_name_recall(symptom_name):# 将参数中当前的文本编码成向量sentence = []sentence.append(symptom_name)# qyery_emb = model.encode(sentence)qyery_emb = encode(sentence,tokenizer,model)# 去faiss中检索相近的faiss索引# 加载faissloaded_faiss_index = load_faiss_index(faiss_index_path)# 寻找最近k个物料# R, D, I = loaded_faiss_index.search_items(qyery_emb.reshape([-1, 384]), k=10, n_probe=5)R, D, I = loaded_faiss_index.search_items(np.array(qyery_emb.reshape([-1, 768]).cpu()), k=10, n_probe=5)# 从faiss库中检索的物料ID进行转换result = []for id_list in R:for item in id_list:result.append(item)symptom_name_list = symptom_name_df[symptom_name_df['index'].isin(result)]['symptom_name'].to_list()# 从相似度检索的结果中,去除自己if symptom_name in symptom_name_list:symptom_name_list.remove(symptom_name)print(symptom_name + ' 的相近的词:' + str(symptom_name_list))word_lsit = ['头痛','恶心吧吐','期饮酒','出血','失眠']
for word in word_lsit:symptom_name_recall(word)
faiss_index.py
import faiss
import numpy as npclass faissIndex:def __init__(self, dim, n_centroids, metric):self.dim = dimself.n_centriods = n_centroidsassert metric in ('INNER_PRODUCT', 'L2'), "Input metric not in 'INNER_PRODUCT' or 'L2'"self.metric = faiss.METRIC_INNER_PRODUCT if metric == 'INNER_PRODUCT' else faiss.METRIC_L2self._build_index()returndef _build_index(self):self._quantizer = faiss.IndexFlatL2(self.dim)self.index = faiss.IndexIVFFlat(self._quantizer, self.dim, self.n_centriods, self.metric)self.is_trained = self.index.is_trainedself.n_samples = 0 # 查询向量池中的向量个数self.items = np.array([]) # 向量池中向量对应的item,数量应与self.n_samples保持一致,即向量与item一一对应return Truedef reset_index(self, dim, n_centroids, metric):self.dim = dimself.n_centriods = n_centroidsassert metric in ('INNER_PRODUCT', 'L2'), "Input metric not in 'INNER_PRODUCT' or 'L2'"self.metric = faiss.METRIC_INNER_PRODUCT if metric == 'INNER_PRODUCT' else faiss.METRIC_L2self._build_index()returndef train(self, vectors_train):self.index.train(vectors_train)self.is_trained = self.index.is_trainedreturndef add(self, vectors, items=None):if not items.empty: # 当有输入items时,验证之前的item和vector数量是否匹配,以及当前输入assert len(vectors) == len(items), "Length of vectors ({n_vectors}) and items ({n_items}) don't match, please check your input.".format(n_vectors=len(vectors), n_items=len(items))assert self.n_samples == len(self.items), "Amounts of added vectors and items don't match, cannot add more items."self.items = np.append(self.items, items.to_numpy())else:assert len(self.items) == 0, "There were items added previously, please added corresponding items in this batch."self.index.add(vectors)self.n_samples += len(vectors)returndef search(self, query_vector, k, n_probe=1):assert query_vector.shape[1] == self.dim, "The dimension of query vector ({dim_vector}) doesn't match the training vector set ({dim_index})!".format(dim_vector=query_vector.shape[1], dim_index=self.dim)assert self.is_trained, "Faiss index is not trained, please train index first!"assert self.n_samples > 0, "Faiss index doesn't have any vector for query, please add vectors into index first!"self.index.nprobe = n_probeD, I = self.index.search(query_vector, k)return D, I# k = 30 # 对每条向量(每行)寻找最近k个物料# n_probe = 5 # 每次查询只查询最近邻n_probe个聚类def search_items(self, query_vector, k, n_probe=1):D, I = self.search(query_vector, k, n_probe)R = [self.items[i] for i in I]return R, D, I
gen_vec_save2_faiss.py
"""
# 训练语义向量并保存在faiss中
step1: 将句子生成向量
step2: 将向量保存在faiss中
"""
import pandas as pd
import numpy as np
# from sentence_transformers import SentenceTransformer
# Download model
# model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
from sentence_emb import encode
import pickle
from faiss_index import faissIndex
from tqdm import tqdmfaiss_index_path = "faiss_index_robert.pkl"from transformers import BertTokenizer, BertModel
import torchdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# First we initialize our model and tokenizer:
tokenizer = BertTokenizer.from_pretrained('./result')
model = BertModel.from_pretrained('./result').cuda()# ====================== 创建faiss index并进行训练 ======================
# 创建faiss index并进行训练
def build_faiss_index(df_resources, semantic_vector, n_centroids=5, metric='L2'):print("现在开始进行faiss index模型训练")# 构建faiss索引模型dim = semantic_vector.shape[1]print("训练数据维度:", dim)print("聚类中心个数:", n_centroids)print("向量距离指标:", metric)# 训练faiss索引index = faissIndex(dim, n_centroids, metric)# vectors = np.stack(df_resources['index'].values).astype('float32') # faiss只支持32位浮点数查询vectors = semantic_vectoritems = df_resources['index']index.train(vectors)index.add(vectors, items)print("faiss index模型已训练完成")return index# ====================== 保存faiss ======================
# 将index按照指定的日期命名并保存至本地
def save_index(index, path):print("现在开始将faiss index保存至本地")fw = open(path, mode='wb', errors=None)pickle.dump(index, fw)fw.close()print("faiss_index模型已保存至本地")def split_batch(init_list, batch_size):groups = zip(*(iter(init_list),) * batch_size)end_list = [list(i) for i in groups]count = len(init_list) % batch_sizeend_list.append(init_list[-count:]) if count != 0 else end_listreturn end_list"""
# 利用sentence transfermer 生成文本向量
# 训练faiss
# 保存faiss
param:
"""def sentence2faiss_transfermer():df = pd.read_csv('col2.csv')train_json = df.to_dict('records')# 取文本将文本转化为向量title_list = [item['symptom_name'] for item in train_json]print(len(title_list))print("正在训练中.......")# title_list = title_list[:500]sb = split_batch(title_list, 8)embeddings = []# print(len(title_list))# emb = encode(title_list, tokenizer, model)# print(emb)# exit()for batch in tqdm(sb):try:emb = encode(batch, tokenizer, model)emb = np.array(emb.to("cpu"))for item in emb:embeddings.append(item)except Exception as e:print(e)# print(len(embeddings))# embeddings = np.array(embeddings)
# print(embeddings)
# print(len(embeddings))# exit()# embeddings = encode(title_list)# 创建faiss index并进行训练df_resources = pd.DataFrame(train_json)# print(embeddings.shape)print("==================================================")# emb = emb.cpu()# semantic_2d_array = np.array(embeddings.to("cpu"))# 将numpy数组转换成CUDA张量# semantic_2d_array= torch.tensor([item.cpu().detach().numpy() for item in semantic_2d_array]).cuda()print("开始build_faiss_index")# print(len(np.array(emb)))trained_index = build_faiss_index(df_resources, np.array(embeddings), n_centroids=5, metric='L2')print("开始save_index")# 保存faiss模型save_index(trained_index, faiss_index_path)sentence2faiss_transfermer()