指数分布的理解,推导与应用

指数分布的定义

在浙大版的教材中,指数分布的定义如下:
若连续型的随机变量 X X X的概率密度为:
f ( x ) = { 1 θ e − x θ , x>0 0 , 其他 f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & \text{x>0}\\ 0, & \text{其他} \end{cases} f(x)={θ1eθx,0,x>0其他
其中 θ > 0 \theta>0 θ>0为常数,则称 X X X服从参数为 θ \theta θ的指数分布,其中 θ \theta θ的含义是事件发生的时间间隔

需要特别注意的是在考研大纲中的形式如下:
f ( x ) = { λ e − λ x , x ≥ 0 0 , 其他 f(x) = \begin{cases} \lambda e^{-\lambda{x}}, & x \geq 0\\ 0, & \text{其他} \end{cases} f(x)={λeλx,0,x0其他
其中 λ \lambda λ每单位时间发生该事件的次数,这种形式更加常见,服从的是参数为 1 λ \frac{1}{\lambda} λ1的指数分布

指数分布分布的理解与公式推导

在之前的文章中我们说过泊松分布https://blog.csdn.net/qq_42692386/article/details/125916391,可以知道泊松分布其实是描述一段时间内事情发生了多少次(例子中就是营业时间内卖了多少个馒头)的概率分布,而现在我们想研究一下事件与事件之间间隔时间(卖两个馒头之间的间隔时间)的服从什么分布呢?
假如某一天没有卖出馒头,比如说周三吧,这意味着,周二最后卖出的馒头,和周四最早卖出的馒头中间至少间隔了一天:
在这里插入图片描述

当然也可能运气不好,周二也没有卖出馒头。那么卖出两个馒头的时间间隔就隔了两天,但无论如何时间间隔都是大于一天的:
在这里插入图片描述
而某一天没有卖出馒头的概率可以由泊松分布得出:

P ( X = 0 ) = λ 0 0 ! e − λ = e − λ P(X=0)=\frac{\lambda^0}{0!}e^{-\lambda}=e^{-\lambda} P(X=0)=0!λ0eλ=eλ

根据上面的分析,卖出两个馒头之间的时间间隔要大于一天,那么必然要包含没有卖出馒头的这天,所以两者的概率是相等的。如果假设随机变量为:

Y = 卖出两个馒头之间的时间间隔 Y=卖出两个馒头之间的时间间隔 Y=卖出两个馒头之间的时间间隔

那么就有:

P ( Y > 1 ) = P ( X = 0 ) = e − λ P(Y > 1)=P(X=0)=e^{-\lambda} P(Y>1)=P(X=0)=eλ

但是现在问题出现了:之前求出的泊松分布实在限制太大,只告诉了我们每天卖出的馒头数。而两个馒头卖出的事件间隔可能是大于一天,也有可能只间隔了几分钟,所以我们想知道任意的事件间隔里卖出的馒头数量的概率分布,比如半天卖出的馒头数的分布,一小时卖出的馒头数的分布。
稍微扩展下可以得到新的函数:

P ( X = k , t ) = ( λ t ) k k ! e − λ t P(X=k,t)=\frac{({\lambda}{t})^k}{k!}e^{-\lambda{t}} P(X=k,t)=k!(λt)keλt

扩展后得到的这个函数称为泊松过程,具体的推导过程比较复杂,可以自行搜索学习,这里不再赘述。
通过新的这个函数就可知不同的时间段 t t t内卖出的馒头数的分布了( t = 1 t=1 t=1时就是泊松分布):

在这里插入图片描述

根据之前的分析,两次卖出馒头之间的时间间隔大于 t t t的概率,等同于 t t t时间内没有卖出一个馒头的概率,而后者的概率可以由泊松过程给出。还是一样假设随机变量 Y = 卖出两个馒头之间的时间间隔 Y=卖出两个馒头之间的时间间隔 Y=卖出两个馒头之间的时间间隔
则随机变量 Y Y Y的概率:

P ( Y > t ) = P ( X = 0 , t ) = ( λ t ) 0 0 ! e − λ t = e − λ t , t ≥ 0 P(Y > t)=P(X=0,t)=\frac{({\lambda}{t})^0}{0!}e^{-\lambda{t}}=e^{-\lambda{t}},t \geq 0 P(Y>t)=P(X=0,t)=0!(λt)0eλt=eλt,t0

进而有:
P ( Y ≤ t ) = 1 − P ( Y > t ) = 1 − e − λ t P(Y \leq t)=1-P(Y > t)=1-e^{-\lambda{t}} P(Yt)=1P(Y>t)=1eλt

这其实已经得到了 的累积分布函数了:
F ( y ) = P ( Y ≤ y ) = { 1 − e − λ y , y ≥ 0 0 , y < 0 F(y)=P(Y \leq y)= \begin{cases} 1-e^{-\lambda{y}}, & y\geq 0 \\ 0, & y<0 \end{cases} F(y)=P(Yy)={1eλy,0,y0y<0

对其求导就可以得到概率密度函数:
f ( y ) = { λ e − λ y , y ≥ 0 0 , y < 0 f(y)= \begin{cases} \lambda e^{-\lambda{y}}, & y\geq 0 \\ 0, & y<0 \end{cases} f(y)={λeλy,0,y0y<0

这就是卖出馒头的时间间隔 的概率密度函数,也就是指数分布 。

对应参数的含义辨析

和教科书中的定义比较,可以看到对应的形式稍微不一样,但是实际上 λ = 1 θ \lambda=\frac{1}{\theta} λ=θ1,这里 θ \theta θ的含义是事件发生的事件间隔。根据之前的泊松分布定义和推导过程我们知道这里的 λ \lambda λ是对应随机事件在对应时间内的数学期望。在泊松分布中是对应的单位时间内卖出的馒头数量的总和,而在指数分布中,由于我们要研究的是随机事件是对应的随机事件发生间隔,所以对应随机事件的期望(也就是卖出两个馒头的时间间隔的期望)是单位时间发生次数(卖出的馒头数量)的倒数。所以可以将参数 λ \lambda λ改为 1 θ \frac{1}{\theta} θ1,即可得到教科书中参数为 1 θ \frac{1}{\theta} θ1的公式:

举个例子:如果您每天卖了3个馒头( λ = 3 \lambda=3 λ=3),则意味着每卖出2个馒头的间隔期望为 1 3 \frac{1}{3} 31 θ = 1 λ = 1 3 \theta=\frac{1}{\lambda}=\frac{1}{3} θ=λ1=31)。在有的参考书中, θ \theta θ被称为“衰减率”*

指数分布的图像

指数分布中的 λ \lambda λ是每日平均卖出的馒头数,如果 λ \lambda λ越大,也就是说每日卖出的馒头越多,那么两个馒头之间的时间间隔必然越短,这点从图像上也可以看出。

λ \lambda λ较小的时候,比如说 λ = 1 \lambda=1 λ=1吧,也就是说一天只卖出一个馒头,那么馒头卖出间隔时间大于1的可能性就很大(下图是指数分布的概率密度函数的图像,对应的概率是曲线下面积):
在这里插入图片描述

而如果 λ \lambda λ较大的时候,比如说 λ = 3 \lambda=3 λ=3,也就是说一天卖出三个馒头,那么馒头卖出间隔时间大于1的可能性已经变得很小了:
在这里插入图片描述

指数分布期望与方差

指数分布的期望值是:

E ( X ) = 1 λ {E} (X)={\frac {1}{\lambda }} E(X)=λ1
这个很好理解:如果你平均每天卖两个馒头,那么你预期每卖一个馒头的时间是半天。

指数分布的方差:

D ( X ) = 1 λ 2 {D} (X)={\frac {1}{\lambda^2 }} D(X)=λ21

严格的推导过程如下:
首先,指数分布属于连续型随机分布,因此,其期望E(X)为:
E ( X ) = ∫ − ∞ + ∞ ∣ x ∣ f ( x ) d x = ∫ 0 + ∞ x f ( x ) d x = ∫ 0 + ∞ x λ e − λ x d x = 1 λ ∫ 0 + ∞ λ x e − λ x d λ x E(X)=\int_{-\infty}^{+\infty} |x|f(x)dx=\int_{0}^{+\infty}xf(x)dx=\int_{0}^{+\infty}x \lambda e^{-\lambda{x}}dx= \frac{1}{\lambda}\int_{0}^{+\infty} {\lambda}x e^{-\lambda{x}}d{\lambda}x E(X)=+xf(x)dx=0+xf(x)dx=0+xλeλxdx=λ10+λxeλxdλx
u = λ x u=λx u=λx,并使用分步积分法积分,则:
E ( X ) = 1 λ ∫ 0 + ∞ u e − u d u = 1 λ [ ( − e − u − u e − u ) ∣ 0 + ∞ = 1 λ E(X)=\frac{1}{\lambda}\int_{0}^{+\infty}ue^{−u}du=\frac{1}{\lambda}[(−e^{−u}−ue^{−u})\big|_{0}^{+\infty}=\frac{1}{\lambda} E(X)=λ10+ueudu=λ1[(euueu) 0+=λ1

对于指数分布的方差D(X)有:
D ( X ) = E ( X 2 ) − ( E ( X ) ) 2 D(X)=E(X^2)-(E(X))^2 D(X)=E(X2)(E(X))2
其中
E ( X 2 ) = ∫ − ∞ ∞ ∣ x 2 ∣ f ( x ) d x = ∫ 0 ∞ x 2 f ( x ) d x = ∫ 0 ∞ x 2 ⋅ λ e − λ x d x E(X^2)=\int_{-\infty }^{\infty }|x^2|f(x)dx=\int_{0}^{\infty }x^2f(x)dx=\int_{0}^{\infty }x^2\cdot\lambda e^{-\lambda x}dx E(X2)=x2f(x)dx=0x2f(x)dx=0x2λeλxdx
E ( X 2 ) = 1 λ 2 ∫ 0 ∞ λ x λ x e − λ x d λ x E(X^2)=\frac {1} {\lambda^2}\int_{0}^{\infty }\lambda x \lambda xe^{-\lambda x}d\lambda x E(X2)=λ210λxλxeλxdλx

同样令 u = λ x u=λx u=λx,并使用分步积分法积分,则:
E ( X 2 ) = 1 λ 2 ∫ 0 ∞ u 2 e − u d u = 1 λ 2 [ ( − 2 e − u − 2 u e − u − u 2 e − u ) ∣ ( ∞ , 0 ) ] = 1 λ 2 ⋅ 2 = 2 λ 2 E(X^2)=\frac {1} {\lambda^2}\int_{0}^{\infty }u^2e^{-u}du=\frac {1} {\lambda^2}[(-2e^{-u}-2ue^{-u}-u^2e^{-u})|(\infty,0)]=\frac {1} {\lambda^2}\cdot 2=\frac {2} {\lambda^2} E(X2)=λ210u2eudu=λ21[(2eu2ueuu2eu)(,0)]=λ212=λ22
即可利用公式解得
D ( X ) = E ( X 2 ) − ( E ( X ) ) 2 = 2 λ 2 − ( 1 λ ) 2 = 1 λ 2 D(X)=E(X^2)-(E(X))^2=\frac {2} {\lambda^2}-(\frac {1} {\lambda})^2=\frac {1} {\lambda^2} D(X)=E(X2)(E(X))2=λ22(λ1)2=λ21

指数分布的无记忆性

无记忆性是指经过一定的试验次数或时间后,随机变量的条件概率仍服从相同的分布,形象化地说计算后续的分布时可以把过去的经历完全忽略忘记,故称为无记忆性
P ( X > s + t ∣ X > s ) = P ( X > t ) , s , t ≥ 0 P(X>s+t \mid X>s)=P(X>t), \quad \ \ s, t \geq 0 P(X>s+tX>s)=P(X>t),  s,t0
指数分布的无记忆性证明如下:
P ( X > s + t ∣ X > s ) = P { ( X > s + t ) ∩ ( X > s ) } P ( X > s ) = P ( X > s + t ) P ( X > s ) = 1 − F ( s + t ) 1 − F ( s ) = e − λ ( s + t ) e − λ ( s ) = e − λ t = P ( X > t ) P(X>s+t \mid X>s)=\frac{P\{(X>s+t) \cap ( X>s)\}}{ P( X>s)} \\ =\frac{P(X>s+t)}{ P( X>s)} =\frac{1-F(s+t)}{ 1-F(s)} \\ =\frac{e^{-\lambda(s+t)}}{e^{-\lambda(s)}}=e^{-\lambda{t}}=P(X>t) P(X>s+tX>s)=P(X>s)P{(X>s+t)(X>s)}=P(X>s)P(X>s+t)=1F(s)1F(s+t)=eλ(s)eλ(s+t)=eλt=P(X>t)

在浙大教材中有个例子:如果X是某一个电器的使用寿命,在使用过 s 小时后,它还能再使用 t 小时的概率,和它一开始算寿命就是 t 小时的概率是一样的。
很多人觉得日常生活中的电子元件用了十年之后不可能还能和新的有一样的预期寿命,实际上这个例子应该要加上一个条件的:如果将电器考虑作理想的电器,器件不会老化。
此时,电器的寿命是随机的。可以视为电器内部彷佛每秒钟都在扔硬币(扔硬币很好理解,不管前面扔了多少次,再扔一次硬币正反面的概率仍是二分之一),扔到了正面,电器就坏了。在这种情况下,我们认为电器的寿命服从指数分布。现实中是不会有理想电器的,但是如果只考虑短时间内的电器寿命,那么就可以将之视作理想电器,认为它的寿命服从指数分布。

指数分布应用实例

假设银行平均每 10 分钟接到一个新电话。客户致电后,确定下一个客户在之后 10 到 15 分钟内致电的可能性。
λ = 1 10 = 0.1 λ =\frac{1}{10}=0.1 λ=101=0.1

则新客户在 10-15 分钟内致电的概率:
P ( 10 < X ≤ 15 ) = P ( X ≤ 15 ) − P ( X ≤ 10 ) = ( 1 – e − 0.1 × 15 ) – ( 1 – e − 0.1 × 10 ) = 0.7769 – 0.6321 = 0.1448 P(10 < X ≤ 15) =P( X ≤ 15)-P(X ≤ 10)= (1 – e^{ -0.1\times15} )– (1 – e^{ -0.1\times10 })= 0.7769 – 0.6321= 0.1448 P(10<X15)=P(X15)P(X10)=(1–e0.1×15)(1–e0.1×10)=0.7769–0.6321=0.1448
所以下一个客户在之后 10-15 分钟内致电的可能性是0.1448 。

参考文章:
https://blog.csdn.net/ccnt_2012/article/details/89875865
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/14392.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python正则表达式与Excel文件名批量匹配技术文章

目录 引言 正则表达式基础 Python中的re模块 Excel文件名批量匹配案例 常见问题与解决方案 结论 引言 在现代办公环境中&#xff0c;Excel文件几乎成为了数据分析和处理的标配工具。由于Excel文件可能包含大量的数据和信息&#xff0c;因此&#xff0c;对Excel文件的命名…

在aspNetCore中 使用System.Text.Json的定制功能, 将定制化的json返回给前端

C# 默认大写, 而大部分的前端默认小写, 这时候可以如此配置: builder.Services.AddControllers().AddJsonOptions((opt) > {opt.JsonSerializerOptions.PropertyNamingPolicy System.Text.Json.JsonNamingPolicy.CamelCase;opt.JsonSerializerOptions.WriteIndented true…

DSPF网络类型实验1

对R6配置 对R1配置 对R2 对R3 对R4 对R5 对R1R2R3R4R5加用户 环回处理 然后开始配置缺省 R1有两个下一跳 3&#xff0c;4&#xff0c;5同R2 然后对R1 dynamic动态 对R2 手写 把注册加上 register R3同R2处理

医学图像分割

论文&#xff1a;Medical Image Segmentation Using Deep Learning: A Survey 参考&#xff1a;[医学图像分割综述] Medical Image Segmentation Using Deep Learning: A Survey-CSDN博客 一、背景 特征表示的困难&#xff1a;模糊、噪声、对比度低--->CNN属于语义分割&a…

Web Server项目实战2-Linux上的五种IO模型

上一节内容的补充&#xff1a;I/O多路复用是同步的&#xff0c;只有调用某些API才是异步的 Unix/Linux上的五种IO模型 a.阻塞 blocking 调用者调用了某个函数&#xff0c;等待这个函数返回&#xff0c;期间什么也不做&#xff0c;不停地去检查这个函数有没有返回&#xff0c…

Offline RL : Beyond Reward: Offline Preference-guided Policy Optimization

ICML 2023 paper code preference based offline RL&#xff0c;基于HIM&#xff0c;不依靠额外学习奖励函数 Intro 本研究聚焦于离线偏好引导的强化学习&#xff08;Offline Preference-based Reinforcement Learning, PbRL&#xff09;&#xff0c;这是传统强化学习&#x…

轻量音乐网站程序源码,在线音乐免费听歌

这是一个高品质的音乐共享和流媒体平台&#xff0c;用户可以在这个网站上免费在线听歌。这个轻量级的音乐网站程序源码&#xff0c;是您创建自己的音乐流媒体网站的最佳选择&#xff01;它还支持制作插件&#xff0c;并且在更新后&#xff0c;您可以保留您的自定义设置。 下 载…

Python基于PyQt6制作GUI界面——多选框

QCheckBox 是 PyQt6 中的一个复选框控件&#xff0c;它允许用户通过单击来选择或取消选择某个选项。与 QRadioButton 不同&#xff0c;QCheckBox 控件并不互斥&#xff0c;这意味着用户可以同时选择多个 QCheckBox。示例对应的制作的 ui文件 界面如下所示。 <?xml version…

【MATLAB源码-第215期】基于matlab的8PSK调制CMA均衡和RLS-CMA均衡对比仿真,对比星座图和ISI。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 CMA算法&#xff08;恒模算法&#xff09; CMA&#xff08;Constant Modulus Algorithm&#xff0c;恒模算法&#xff09;是一种自适应盲均衡算法&#xff0c;主要用于消除信道对信号的码间干扰&#xff08;ISI&#xff09;…

Python使用thread模块实现多线程

介绍&#xff1a; 线程&#xff08;Threads&#xff09;是操作系统提供的一种轻量级的执行单元&#xff0c;可以在一个进程内并发执行多个任务。每个线程都有自己的执行上下文&#xff0c;包括栈、寄存器和程序计数器。 在Python中&#xff0c;可以使用threading模块创建和管理…

今日刷三题(day14):ISBN号码+kotori和迷宫+矩阵最长递增路径

题目一&#xff1a;ISBN号码 题目描述&#xff1a; 每一本正式出版的图书都有一个ISBN号码与之对应&#xff0c;ISBN码包括9位数字、1位识别码和3位分隔符&#xff0c;其规定格式如“x-xxx-xxxxx-x”&#xff0c;其中符号“-”是分隔符&#xff08;键盘上的减号&#xff09;&…

STM32使用旋转编码开关

一、旋转编码开关如何工作 编码器内部有一个开槽圆盘&#xff0c;连接到公共接地引脚 C。它还具有两个接触针 A 和 B&#xff0c;如下所示。 当您转动旋钮时&#xff0c;A 和 B 按照特定顺序与公共接地引脚 C 接触&#xff0c;具体顺序取决于转动旋钮的方向。 当它们与公共地接…

Web3 游戏平台 Creo Engine 销毁代币总量的20%,以促进长远发展

Creo Engine 5月16日进行了第三次代币销毁&#xff0c;这次的销毁占代币总量的 20%。一共销毁了2亿 $CERO 代币&#xff0c;市场价值接近 2000 万美元。 Creo Engine 致力于连接世界、为玩家提供一站式游戏中心&#xff0c;并提升 Web3 游戏体验。 Creo Engine 发布于2022年&am…

USB抓包工具:bushound安装及使用

一、环境搭建 下载busbound6.01安装包&#xff0c;安装完成&#xff0c;重启电脑。 二、工具配置 按照下图配置工具&#xff1a; 使能自动识别新设备 2. 设置抓取数据的容量 三、抓包 回到capture选项卡&#xff0c;在页面的右下角有个run的按钮&#xff0c;点击使能&…

RedHat9 | 磁盘管理

硬盘分区类型 MBR分区方案 MBR也被称为主引导记录&#xff0c;它存在0柱面0磁道0扇区内&#xff0c;在磁盘的第一个扇区内&#xff0c;大小为512字节 512字节包含&#xff1a;446字节初始化程序加载器、64字节分区表、2字节校验码由于每个分区为16字节&#xff0c;所以MBR只…

用智能插件(Fitten Code: Faster and Better AI Assistant)修改好了可以持久保存的vue3留言板

天际 第一修改是选项式&#xff1a; <!-- 模板结构 --> <template><div><textarea placeholder"请输入备注内容" v-model"newItem"></textarea><button click"addItem">添加</button><hr><…

TypeScript-搭建编译环境

搭建编译环境 TypeScript 编写的代码是无法直接在js引擎( 浏览器 / Nodejs )中运行的&#xff0c;最终还需要经过编译成js代码才可以正常运行 搭建手动编译环境 1️⃣ 全局安装 typescript 包&#xff08;编译引擎&#xff09; -> 注册 tsc 命令 npm i -g typescript 2…

下拉框操作/键鼠操作/文件上传

在我们做UI自动化测试的时候&#xff0c;会有一些元素需要特殊操作&#xff0c;比如下拉框操作/键鼠操作/文件上传。 下拉框操作 在我们很多页面里有下拉框的选择&#xff0c;这种元素怎么定位呢&#xff1f;下拉框分为两种类型&#xff1a;我们分别针对这两种元素进行定位和…

2024最新 Jenkins + Docker 实战教程(五)- 配置Gitee Webhooks实现自动构建部署

&#x1f604; 19年之后由于某些原因断更了三年&#xff0c;23年重新扬帆起航&#xff0c;推出更多优质博文&#xff0c;希望大家多多支持&#xff5e; &#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Mi…