基于transformers框架实践Bert系列4-文本相似度

本系列用于Bert模型实践实际场景,分别包括分类器、命名实体识别、选择题、文本摘要等等。(关于Bert的结构和详细这里就不做讲解,但了解Bert的基本结构是做实践的基础,因此看本系列之前,最好了解一下transformers和Bert等)
本篇主要讲解文本相似度应用场景。本系列代码和数据集都上传到GitHub上:https://github.com/forever1986/bert_task

目录

  • 1 环境说明
  • 2 前期准备
    • 2.1 了解Bert的输入输出
    • 2.1 了解Bert的输入输出
    • 2.2 数据集与模型
    • 2.3 任务说明
    • 2.4 实现关键
  • 3 关键代码
    • 3.1 数据集处理
    • 3.2 模型加载
    • 3.3 评估函数
  • 4 整体代码
  • 5 运行效果

1 环境说明

1)本次实践的框架采用torch-2.1+transformer-4.37
2)另外还采用或依赖其它一些库,如:evaluate、pandas、datasets、accelerate等

2 前期准备

2.1 了解Bert的输入输出

Bert模型是一个只包含transformer的encoder部分,并采用双向上下文和预测下一句训练而成的预训练模型。可以基于该模型做很多下游任务。

2.1 了解Bert的输入输出

Bert的输入:input_ids(使用tokenizer将句子向量化),attention_mask,token_type_ids(句子序号)、labels(结果)
Bert的输出:
last_hidden_state:最后一层encoder的输出;大小是(batch_size, sequence_length, hidden_size)
pooler_output:这是序列的第一个token(classification token)的最后一层的隐藏状态,输出的大小是(batch_size, hidden_size),它是由线性层和Tanh激活函数进一步处理的。(通常用于句子分类,至于是使用这个表示,还是使用整个输入序列的隐藏状态序列的平均化或池化,视情况而定)。(注意:这是关键输出,本次任务就需要获取该值,并进行相似度计算
hidden_states: 这是输出的一个可选项,如果输出,需要指定config.output_hidden_states=True,它也是一个元组,它的第一个元素是embedding,其余元素是各层的输出,每个元素的形状是(batch_size, sequence_length, hidden_size)
attentions:这是输出的一个可选项,如果输出,需要指定config.output_attentions=True,它也是一个元组,它的元素是每一层的注意力权重,用于计算self-attention heads的加权平均值。

2.2 数据集与模型

1)数据集来自:Chinese_Text_Similarity
2)模型权重使用:bert-base-chinese

2.3 任务说明

1)文本相似度任务就是判断2段文本的相似程度,可以理解为是否表达相同的意思。这时可能想到的最简单的方法就是将2段文本作为输入,label是0或1这样一个分类方法,可以采用系列1(情感分类)的方式。但是如果找是一段文本对应多个文本之间的相似度呢?或许你会想到系列3(选择题)的方式。但是如果是一段文本对应几十万的文本之间的相似度呢?虽然系列3(选择题)也能解决问题,但是会很慢,因为你要一一匹配。这里我们可以采用一个特征提取方式,先将文本输入到模型做特征,最后在通过相似度比较函数对2段文本的特征进行比较即可,虽然也是需要每段文本都做比较,但是好处是先将文本做好特征。
在这里插入图片描述
2)这时候我们需要做的是分别将数据放入同一个BERT模型进行特征提取,然后通过相似度和余弦相似度损失计算进行模型训练即可

2.4 实现关键

1)将数据处理成对放入模型中
2)自定义模型,在forward中对2个句子分别通过bert做特征提取,然后计算相似度和余弦相似度损失

3 关键代码

3.1 数据集处理

Chinese_Text_Similarity数据集是一个txt文件,每一行分别存储“句子1”、“句子2”、“相似度”。下面代码就是读取数据并处理为模型想要的类型

# 读取数据
df = pd.read_csv(data_path, sep='\s+')
df = df.sample(n=5000)  # 取其中5000条
datasets = Dataset.from_pandas(df)
# 划分训练集和测试集
datasets = datasets.train_test_split(test_size=0.1, shuffle=True, seed=42)
# 划分训练集和验证集
train_datasets = datasets["train"].train_test_split(test_size=0.05, shuffle=True, seed=42)
datasets["train"] = train_datasets["train"]
datasets["validation"] = train_datasets["test"]
tokenizer = BertTokenizerFast.from_pretrained(model_path)# 数据处理函数
def process_function(datas):sentences = []labels = []for sentence1, sentence2, label in zip(datas["句子1"], datas["句子2"], datas["相似度"]):sentences.append(sentence1)sentences.append(sentence2)labels.append(1 if int(label) == 1 else -1)tokenized_datas = tokenizer(sentences, max_length=256, truncation=True, padding="max_length")# 关键点:这里将2条数据合并为一组,也就是reshape,从(2倍datas数量 * max_length),变成(datas数量 * 2 * max_length)tokenized_datas = {k: [v[i: i + 2] for i in range(0, len(v), 2)] for k, v in tokenized_datas.items()}tokenized_datas["labels"] = labelsreturn tokenized_datasnew_datasets = datasets.map(process_function, batched=True)

3.2 模型加载

自定义模型,模仿transformers中的其它BERT模型,继承BertPreTrainedModel(为了方便使用XXX.from_pretrained()获取模型),参照其它BERT模型写法,重新init和forward方法

class SimilarityModel(BertPreTrainedModel):# 不需要增加其它层def __init__(self, config: PretrainedConfig, *inputs, **kwargs):super().__init__(config, *inputs, **kwargs)self.bert = BertModel(config)self.post_init()# 在forward中对2个句子分别通过bert做特征提取,然后计算相似度和余弦相似度损失def forward(self,input_ids: Optional[torch.Tensor] = None,attention_mask: Optional[torch.Tensor] = None,token_type_ids: Optional[torch.Tensor] = None,position_ids: Optional[torch.Tensor] = None,head_mask: Optional[torch.Tensor] = None,inputs_embeds: Optional[torch.Tensor] = None,labels: Optional[torch.Tensor] = None,output_attentions: Optional[bool] = None,output_hidden_states: Optional[bool] = None,return_dict: Optional[bool] = None,):return_dict = return_dict if return_dict is not None else self.config.use_return_dict# 分别获取sentenceA 和 sentenceB的输入senA_input_ids, senB_input_ids = input_ids[:, 0], input_ids[:, 1]senA_attention_mask, senB_attention_mask = attention_mask[:, 0], attention_mask[:, 1]senA_token_type_ids, senB_token_type_ids = token_type_ids[:, 0], token_type_ids[:, 1]# 分别获取sentenceA 和 sentenceB的向量表示senA_outputs = self.bert(senA_input_ids,attention_mask=senA_attention_mask,token_type_ids=senA_token_type_ids,position_ids=position_ids,head_mask=head_mask,inputs_embeds=inputs_embeds,output_attentions=output_attentions,output_hidden_states=output_hidden_states,return_dict=return_dict,)# 获得pooler_outputsenA_pooled_output = senA_outputs[1]senB_outputs = self.bert(senB_input_ids,attention_mask=senB_attention_mask,token_type_ids=senB_token_type_ids,position_ids=position_ids,head_mask=head_mask,inputs_embeds=inputs_embeds,output_attentions=output_attentions,output_hidden_states=output_hidden_states,return_dict=return_dict,)senB_pooled_output = senB_outputs[1]  # [batch, hidden]# 计算相似度cos = CosineSimilarity()(senA_pooled_output, senB_pooled_output)# 计算lossloss = Noneif labels is not None:loss_fct = CosineEmbeddingLoss(0.3)loss = loss_fct(senA_pooled_output, senB_pooled_output, labels)output = (cos,)return ((loss,) + output) if loss is not None else outputmodel = SimilarityModel.from_pretrained(model_path)

3.3 评估函数

这里采用evaluate库加载accuracy准确度计算方式来做评估,本次实验将accuracy和f1的计算py文件下载下来,因此也是本地加载

# 评估函数:此处的评估函数可以从https://github.com/huggingface/evaluate下载到本地
acc_metric = evaluate.load("./evaluate/metric_accuracy.py")
f1_metric = evaluate.load("./evaluate/metric_f1.py")def evaluate_function(eval_predict):predictions, labels = eval_predictpredictions = [int(p > 0.7) for p in predictions]labels = [int(l > 0) for l in labels]acc = acc_metric.compute(predictions=predictions, references=labels)f1 = f1_metric.compute(predictions=predictions, references=labels)acc.update(f1)return acc

4 整体代码

"""
基于BERT做文本相似度
1)数据集来自:Chinese_Text_Similarity
2)模型权重使用:bert-base-chinese
"""# step 1 引入数据库
import torch
from torch.nn import CosineSimilarity, CosineEmbeddingLossimport evaluate
import pandas as pd
from typing import Optional
from datasets import Dataset
from transformers import TrainingArguments, Trainer, BertTokenizerFast, BertPreTrainedModel, PretrainedConfig, BertModelmodel_path = "./model/tiansz/bert-base-chinese"
data_path = "./data/Chinese_Text_Similarity.txt"# step 2 数据集处理
df = pd.read_csv(data_path, sep='\s+')
df = df.sample(n=5000)  # 取其中5000条
datasets = Dataset.from_pandas(df)
# 划分训练集和测试集
datasets = datasets.train_test_split(test_size=0.1, shuffle=True, seed=42)
# 划分训练集和验证集
train_datasets = datasets["train"].train_test_split(test_size=0.05, shuffle=True, seed=42)
datasets["train"] = train_datasets["train"]
datasets["validation"] = train_datasets["test"]
tokenizer = BertTokenizerFast.from_pretrained(model_path)def process_function(datas):sentences = []labels = []for sentence1, sentence2, label in zip(datas["句子1"], datas["句子2"], datas["相似度"]):sentences.append(sentence1)sentences.append(sentence2)labels.append(1 if int(label) == 1 else -1)tokenized_datas = tokenizer(sentences, max_length=256, truncation=True, padding="max_length")# 这里将2条数据合并为一组,也就是reshape,从(2倍datas数量 * max_length),变成(datas数量 * 2 * max_length)tokenized_datas = {k: [v[i: i + 2] for i in range(0, len(v), 2)] for k, v in tokenized_datas.items()}tokenized_datas["labels"] = labelsreturn tokenized_datasnew_datasets = datasets.map(process_function, batched=True)# step 3 加载模型
class SimilarityModel(BertPreTrainedModel):def __init__(self, config: PretrainedConfig, *inputs, **kwargs):super().__init__(config, *inputs, **kwargs)self.bert = BertModel(config)self.post_init()def forward(self,input_ids: Optional[torch.Tensor] = None,attention_mask: Optional[torch.Tensor] = None,token_type_ids: Optional[torch.Tensor] = None,position_ids: Optional[torch.Tensor] = None,head_mask: Optional[torch.Tensor] = None,inputs_embeds: Optional[torch.Tensor] = None,labels: Optional[torch.Tensor] = None,output_attentions: Optional[bool] = None,output_hidden_states: Optional[bool] = None,return_dict: Optional[bool] = None,):return_dict = return_dict if return_dict is not None else self.config.use_return_dict# Step1 分别获取sentenceA 和 sentenceB的输入senA_input_ids, senB_input_ids = input_ids[:, 0], input_ids[:, 1]senA_attention_mask, senB_attention_mask = attention_mask[:, 0], attention_mask[:, 1]senA_token_type_ids, senB_token_type_ids = token_type_ids[:, 0], token_type_ids[:, 1]# Step2 分别获取sentenceA 和 sentenceB的向量表示senA_outputs = self.bert(senA_input_ids,attention_mask=senA_attention_mask,token_type_ids=senA_token_type_ids,position_ids=position_ids,head_mask=head_mask,inputs_embeds=inputs_embeds,output_attentions=output_attentions,output_hidden_states=output_hidden_states,return_dict=return_dict,)senA_pooled_output = senA_outputs[1]  # [batch, hidden]senB_outputs = self.bert(senB_input_ids,attention_mask=senB_attention_mask,token_type_ids=senB_token_type_ids,position_ids=position_ids,head_mask=head_mask,inputs_embeds=inputs_embeds,output_attentions=output_attentions,output_hidden_states=output_hidden_states,return_dict=return_dict,)senB_pooled_output = senB_outputs[1]  # [batch, hidden]# step3 计算相似度cos = CosineSimilarity()(senA_pooled_output, senB_pooled_output)  # [batch, ]# step4 计算lossloss = Noneif labels is not None:loss_fct = CosineEmbeddingLoss(0.3)loss = loss_fct(senA_pooled_output, senB_pooled_output, labels)output = (cos,)return ((loss,) + output) if loss is not None else outputmodel = SimilarityModel.from_pretrained(model_path)# step 4 评估函数:此处的评估函数可以从https://github.com/huggingface/evaluate下载到本地
acc_metric = evaluate.load("./evaluate/metric_accuracy.py")
f1_metric = evaluate.load("./evaluate/metric_f1.py")def evaluate_function(eval_predict):predictions, labels = eval_predictpredictions = [int(p > 0.7) for p in predictions]labels = [int(l > 0) for l in labels]acc = acc_metric.compute(predictions=predictions, references=labels)f1 = f1_metric.compute(predictions=predictions, references=labels)acc.update(f1)return acc# step 5 创建TrainingArguments
# train是4275条数据,batch_size=32,因此每个epoch的step=134,总step=402
train_args = TrainingArguments(output_dir="./checkpoints",      # 输出文件夹per_device_train_batch_size=32,  # 训练时的batch_sizeper_device_eval_batch_size=32,    # 验证时的batch_sizenum_train_epochs=3,              # 训练轮数logging_steps=50,                # log 打印的频率evaluation_strategy="epoch",     # 评估策略save_strategy="epoch",           # 保存策略save_total_limit=3,              # 最大保存数load_best_model_at_end=True      # 训练完成后加载最优模型)# step 6 创建Trainer
trainer = Trainer(model=model,args=train_args,train_dataset=new_datasets["train"],eval_dataset=new_datasets["validation"],compute_metrics=evaluate_function,)# step 7 训练
trainer.train()# step 8 模型评估
evaluate_result = trainer.evaluate(new_datasets["test"])
print(evaluate_result)# step 9 模型预测
class SentenceSimilarityPipeline:def __init__(self, model, tokenizer) -> None:self.model = model.bertself.tokenizer = tokenizerself.device = model.devicedef preprocess(self, senA, senB):return self.tokenizer([senA, senB], max_length=128, truncation=True, return_tensors="pt", padding=True)def predict(self, inputs):inputs = {k: v.to(self.device) for k, v in inputs.items()}return self.model(**inputs)[1]  # [2, 768]def postprocess(self, logits):cos = CosineSimilarity()(logits[None, 0, :], logits[None,1, :]).squeeze().cpu().item()return cosdef __call__(self, senA, senB):inputs = self.preprocess(senA, senB)logits = self.predict(inputs)result = self.postprocess(logits)if result >= 0.7:return "相似"return "不相似"pipe = SentenceSimilarityPipeline(model, tokenizer)
print(pipe("广东哪里最好玩啊?", "广东最好玩的地方在哪?"))

5 运行效果

在这里插入图片描述

注:本文参考来自大神:https://github.com/zyds/transformers-code

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/14190.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32入门笔记(02):USART串口通信注意事项笔记(SPL库函数版)

这是通过串口通信发送过来的数据,里面包括了故障码,电压,电流,频率等信息,请你用STM32f103系列单片机的串口1读取该数据并解析出电压和电流是多少? 要用STM32F103系列单片机的串口1读取并解析发电机上的逆…

【Django项目】 音乐网站spotify复刻

代码:https://github.com/tomitokko/spotify-clone 注:该项目不是自己提供mp3文件,而是使用spotify 的api接口获取。

docker 命令总结

导出镜像下载 centos 镜像 docker pull centos:centos7.7.1908 常用命令 docker ps 查看正在运行的容器 docker ps -a 查看所有容器 docker images 查看本地已有镜像 停止所有容器 docker stop $(docker ps -aq) 停止某个容器 docker stop 容器名称 删除所有容器 dock…

Java基础入门day54

day54 servlet升级03 特点 当前设计又有一个问题,我们目前可以做到一个实体类用一个servlet,比如Student类的所有crud方法都可以在StudentServlet中的service方法中进行动态处理。假如又有User类,我们就要在UserServlet中设计service方法&a…

探索文档识别技术在加强教育资源共享与合作中的潜力

在数字化浪潮不断推进的今天,教育资源的共享与合作已经成为提高教学质量和效率的关键因素。文档识别技术作为一项强大的工具,在这一过程中发挥着至关重要的作用。本文旨在探讨如何通过文档识别技术的应用,促进教育资源的有效共享与教师、学校…

MySQL主从复制故障:“ Slave_SQL_Running:No“ 两种解决办法

问题 今天搭建MySQL的主从复制,查看从机状态时show slave status\G,发现这个参数为NO,导致主从复制失败。 Slave_SQL_Running: No 后面上网查阅了一下资料,大概就是因为在连接支持数据库后,也就是这个命令后&#xff…

Adobe产品安装目录修改

进入安装包目录&#xff0c;进入到products文件夹 编辑driver.xml文件 将“InstallDir”修改为你需要安装的软件的目录&#xff0c;我这里是修改到D:\Adobe目录 <DriverInfo> <ProductInfo> xxxxxxxxxxxxxxxxx </ProductInfo> 拷贝RequestInfo这部分…

c-lodop 打印面单 内容串页

场景&#xff1a;使用c-lodop程序调取打印机连续打印多张快递单时&#xff0c;上页内容&#xff0c;打到了下一页了 问题原因&#xff1a; 由于是将所有面单内容放到了一个页面&#xff0c;c-lodop 在打印时&#xff0c;发现一页放不下&#xff0c;会自动分割成多页 页面元素…

【在Postman中,如果后端返回的是String类型的数据但不是JSON格式,报错】

在Postman中&#xff0c;如果后端返回的是String类型的数据但不是JSON格式 问题描述解决办法 postman后端返回的String数据,不是json,怎么设置结果的接收&#xff1f; 问题描述 在postman中测试接口&#xff0c;报错Error&#xff1a;Abort&#xff0c;或者显示返回数据校验失…

coveralls使用pytest进行本地测试时报错SyntaxError: invalid escape sequence \S

## 错误复现&#xff1a; git clone gitgithub.com:TheKevJames/coveralls-python.git cd coveralls-python poetry install poetry run pytest## 错误内容&#xff1a; ## 完整的打印信息 test session starts platform darwin -- Python 3.8.18, pytest-8.2.1, pluggy-1.5.…

使用 LlamaParse 进行 PDF 解析并创建知识图谱

此 Python 笔记本提供了有关利用 LlamaParse 从 PDF 文档中提取信息并随后将提取的内容存储到 Neo4j 图形数据库中的综合指南。本教程在设计时考虑到了实用性&#xff0c;适合对文档处理、信息提取和图形数据库技术感兴趣的开发人员、数据科学家和技术爱好者。 该笔记本电脑的主…

可视化大屏,不搞点3D效果,感觉有点对不起观众呢。

使用3D模型可以为可视化展现增加更多的维度和真实感&#xff0c;提供更直观、生动的视觉效果。以下是一些3D模型在可视化展现中的作用&#xff1a; 增强沉浸感&#xff1a;通过使用3D模型&#xff0c;可以让观众感受到更真实的场景和物体&#xff0c;增强他们的沉浸感。这有助…

playwright相关的文章

霍格沃兹测试开发Muller老师 - 个人中心 - 腾讯云开发者社区-腾讯云 霍格沃兹测试开发Muller老师 &#xff1a;

【数组】Leetcode 452. 用最少数量的箭引爆气球【中等】

用最少数量的箭引爆气球 有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points &#xff0c;其中points[i] [xstart, xend] 表示水平直径在 xstart 和 xend之间的气球。你不知道气球的确切 y 坐标。 一支弓箭可以沿着 x 轴从不同点 完全垂直 地…

golang问题

文章目录 Go里有哪些数据结构是并发安全的&#xff1f;int类型是并发安全的吗&#xff1f;为什么int不是并发安全的&#xff1f; Go如何实现一个单例模式&#xff1f;sync.Once是如何实现的&#xff0c;如何不使用sync.Once实现单例模式&#xff1f;Go语言里的map是并发安全的吗…

Freeswitch-Python3开发

文章目录 一、Freeswitch如何使用mod_python31.1 Freeswitch和python1.2 Freeswitch版本选择1.3 Freeswitch编译mod_python31.3.1 debian安装python31.3.2 Freeswitch编译mod_python31.3.3 加载 二、如何编写脚本2.1 函数的基本框架2.2 基本使用2.2.1 触发条件2.2.2 默认脚本位…

pycharm更改远程编辑器设置

pycharm的远程编辑器可以分为两个部分&#xff1a;SFTP服务器(用于传输文件&#xff09;和命令行&#xff08;用于控制linux&#xff09;系统。那么当创建完成后&#xff0c;如何才能更改其设置呢&#xff1f; 一、远程SFTP服务器设置 找到导航栏依次点击tools-deployment-co…

运行vue2项目基本过程

目录 步骤1 步骤2 步骤3 补充&#xff1a; 解决方法&#xff1a; node-scss安装失败解决办法 步骤1 安装npm 步骤2 切换淘宝镜像 #最新地址 淘宝 NPM 镜像站喊你切换新域名啦! npm config set registry https://registry.npmmirror.com 步骤3 安装vue-cli npm install…

取消页面按钮回车事件

html页面登录按钮 <button class"btn btn-success btn-block" id"btnSubmit" data-loading"正在验证登录&#xff0c;请稍候...">登 录</button>js部分 在回车键按下时&#xff0c;阻止默认行为 $(document).keyup(function (event…