正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-16讲 EPIT定时器

前言:

本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM(MX6U)裸机篇”视频的学习笔记,在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。

引用:

正点原子IMX6U仓库 (GuangzhouXingyi) - Gitee.com

《【正点原子】I.MX6U嵌入式Linux驱动开发指南V1.5.2.pdf》

正点原子资料下载中心 — 正点原子资料下载中心 1.0.0 文档

正文:

本文是 “正点原子[第二期]Linux之ARM(MX6U)裸机篇--第16 讲” 的读书笔记。第16讲主要是介绍I.MX6U处理器的EPIT定时器。本节将参考正点原子的视频教程第16讲和配套的正点原子开发指南文档进行学习。

0. 概述

定时器是最常见的外设,常常需要使用定时器来完成精准的定时功能,I.MX6U 提供了多种硬件定时器,有些定时器功能非常强大。本章我们从最基本的EPIT定时器开始,学习如何配置EPIT定时器,使其按照给定的时间,周期性的产生定时器中断,在定时器中断里面我们可以做其他处理,比如翻转LED灯。

1. EPIT定时器原理

EPIT的全称是:Enhanced Period Interrupt Timer,直译过来就是增强的周期中断定时器,它主要是完成周期性中断的。当学过STM32的话应该知道,STM32里面的定时器还有很多其他的功能,比如输入捕获,PWM输出等等。但是I.MX6U的EPIT定时器只是完成周期性中断定时的功能,仅此一项功能。至于输入捕获,PWM输出灯这些功能,I.MX6U由其他的外设来完成。

EPIT是一个32位定时器,在处理器几乎不用介入的情况下提供精准的定时中断,软件使能以后EPIT就会开始运行,EPIT定时器有如下特点:

  1. 时钟源可选的32位向下定时器
  2. 12位分频值
  3. 当计数值和比较值相等的时候产生中断

EPIT定时器的结构如下图所示:

  1. 这是一个多路选择器,用来选择EPIT定时器的时钟源,EPIT共有三个时钟源可以选择 ipg_clk, ipg_clk_32k, ipg_clk_highfrq
  2. 这是一个12位的分频器,负责对时钟源进行分频,12位对应的值是0~4095,对应着1~4096分频
  3. 经过分频的时钟进入到EPIT定时内部,在EPIT定时器内部有三个重要的寄存器:技术寄存器(EPIT_CR),加载寄存器(EPIT_LR)和比较寄存器(EPIT_CMPR),这3个寄存器都是32位的。EPIT是一个向下计数器,也就是说给它一个初始值,它就会从这个给定的初始值开始递减,直到减为0,计数寄存器里面保存的就是当前的计数值。如果EPIT工作在 set-and-forget 模式下,当计数寄存器里面的值减少到0,EPIT就会重新从加载寄存器读取数值到技术寄存器里面,重新开始向下计数。比较寄存器里面保存的数值用于和计数寄存器里面的计数值比较,如果相等的话就会产生一个比较事件。
  4. 比较器
  5. EPIT可设置引脚输出,如果设置了的话就会通过制定的引脚输出信号。
  6. 产生比较中断,也就是定时中断。

EPIT定时器有两种工作模式: set-and-forget 和 free-running ,这两个工作模式的区别如下:

  • set-and-forget 模式:EPITx_CR(x=1,2)寄存器的RLD位置1的时候EPIT工作在此模式下,在此模式下EPIT的计数器值从加载寄存器EPITx_LR中获取初始值,不能直接向计数寄存器写入数据。不管什么时候,只要计数器计数到0,那么就会从加载寄存器EPITx_LR中重新加载数据到计数器中,周而复始。
  • free-running模式:EPITx_CR寄存器的RLD位清零的时候EPIT定时器工作在此模式下,当计数器数到0以后会重新从 0xFFFFFFFF 开始计数,并不是从加载寄存器EPITx_LR中获取数据。

1.1 EPIT定时器关联的 EPITx_XX 寄存器如下

寄存器描述
EPITx_CRControl Register 控制寄存器
EPITx_SRStatus Regisetr 状态寄存器
EPITx_LRLoad Register 加载寄存器
EPITx_CMPRCompare Register 比较寄存器
EPITx_CNRCounter Register 计数寄存器

1.2 EPIT 比较重要的几个寄存器

 加下来看一下GPIT重要的几个寄存器,第一个就是EPIT的配置寄存器EPITx_CR,此寄存器的结构如下图所示:

EPITx_CR控制寄存器描述
CLKSRC bit[25:24]

EPIT时钟源选择位,为0时关闭时钟源,1时使用ipg_clk时钟源,2时使用ipg_clk_higrfreq时钟源,3时使用 ipg_clk_32k 时钟源。

在本例程中,我们设置为 1,也就是选择 ipg_clk 作为 EPIT 的时钟源, ipg_clk=66MHz。

IOVW bit[17]

EPIT计数值覆盖写使能。为0写EPIT LR加载寄存器不影响计数寄存器里的值,为1写EPIT LR加载寄存器会立即覆盖写计数寄存器。

PRESCALAR bit[15:4]

EPIT时钟源分配值,可设置范围0~4095,分别对应1~4096分频。
RLD bit[3]EPIT工作模式,为0的时候工作在free-running模式,为1的时候工作在set-and-forget模式。本章例程设置为1,也就是工作在set-and-forget模式
OCIEN bit[2]比较中断使能位,为0时关闭比较中断,为1的时候使能比较中断。本章实验使能比较中断。
ENMOD bit[1]设置计数器初始值,为0时计数器初始值等于上次关闭EPIT定时器以后计数器里面的值,为1的时候来源于加载寄存器。
EN bit[0]EPIT使能位,为0的时候关闭EPIT,为1的时候使能EPIT。

寄存器EPITx_SR 寄存器结构如下图所示:

寄存器EPITx_SR寄存器只有一个有效位,那就是 OCIF(Outpurt Comparte Interrupt Flag)bit[0],为0时表示没有比较事件发生,为1的时候表示有比较事件发生。当比较事件发生以后需要手动清除此位,此位是写1清零。

关于 EPIT 的寄存器就介绍到这里,关于这些寄存器详细的描述,请参考《I.MX6ULL 参考手册》第 1174 页的 24.6 小节。

2. EPIT定时器程序编写

本章我们使用EPIT产生功能定时中断,然后在中断服务函数里面翻转LED0,接下来以EPIT1为例,讲解需要哪些步骤来实现这个功能。EPIT1的配置步骤如下

  1. 设置EPIT1的时钟源
    设置EPIT1_CR寄存器的 CLKSEL bit[25:24]位,选择 EPIT1的时钟源。
  2. 设置分频值
    设置EPIT1_CR寄存器的 PRESCALER bit[15:4]位,设置分频值
  3. 设置工作模式
    设置EPIT1_CR寄存器的 RLD bit[3] 位,设置计数器的初始值来源。
  4. 设置计数值的初始值来源
    设置EPIT1_CR寄存器的 ENMODE bit[1] 位,设置计数器的初始值来源。
  5. 使能比较中断
    我们要使用到比较中断,因此需要设置EPIT1_CR寄存器的 OCIEN bit[2] 位,使能比较中断。
  6. 设置加载值和比较值
    设置寄存器EPIT1_LR中国加载值和寄存器EPIT1_CMPR中的比较值,通过这两个寄存器就可以决定计时器的中断周期。
  7. EPIT1中断设置和中断服务函数编写
    使能GIC中对应的EPIT1中断,注册中断服务函数,如果需要的话还可以设置中断优先级。最后编写中断服务函数。
  8. 使能EPIT1定时器
    配置好EPIT1以后就可以使能EPIT1了,通过EPIT1_CR寄存器的 EN bit[0] 位来设置。

通过以上几步我们就配置好EPIT了,通过EPIT的比较中断来实现LED0的翻转。

2.1 本节用到的硬件资源

  •  LED0
  • 定时器EPIT1

本实验通过EPIT的中断来控制LED0的亮灭,LED0的硬件原理前面已经介绍过了。

EIPT定时器输出比较中断的中断ID号为 88=56+32:

2.2 实验程序编写

经过上面的分析EPIT1定时器的使用方法和配置EPIT1寄存器的步骤已经清楚,接下来实现正点原子I.MX6U ALPHA/Mini 开发板上的EPIT定时器驱动程序。

#include "bsp_epittimer.h"
#include "bsp_beep.h"
#include "bsp_led.h"
#include "bsp_int.h"void epittimer_init(int frac, int counterValue)
{if(frac<0 || frac > 0xFFF){return;}/* 首先清零EPIT1->CR 控制寄存器.* I.MX6U手册要求在修改EPIT定时器时钟源之前必须先去使能EPIT定时器 */EPIT1->CR = 0x0;/* CLKSEL bit[25:24] EPIT时钟源选择, 1:ipg_clk */EPIT1->CR |= (1 << 24);/* PRESCALAR bit[15:4] EPIT分频值,0:1分频, 66MHz/1==66MHz */EPIT1->CR |= (frac << 4);/* RLD bit[3] EPIT工作模式,1:set-and-foret 模式 */EPIT1->CR |= (1 << 3);/* OCIEN bit[2] EPIT输出比较中断使能,1:使能比较中断 */EPIT1->CR |= (1 << 2);/* ENMODE bit[1] EPIT使能模式,1:EPIT使能是计数器值从LR寄存器获取 */EPIT1->CR |= (1 << 1);/* EPITx_LR 加载值寄存器设置 */EPIT1->LR = counterValue;/* EPIT_CMPR 比较值寄存器设置 */EPIT1->CMPR = 0;/* 使能GIC IRQn 中断 */GIC_EnableIRQ(EPIT1_IRQn);/* 注册EPIT1比较中断 EPIT1_IRQn 的中断处理函数 */system_irqhandler_register(EPIT1_IRQn, eptitimer_irq_handler, NULL);/* 使能EPIT1 EN bit[0], 1: 是能EPIT */EPIT1->CR |= (1 << 0);
}void eptitimer_irq_handler(IRQn_Type irq, void *userparam)
{static int beep_state = 0;static int led_state = 0;if((EPIT1->SR & (1 << 0))){		/* 判断比较中断事件发生 */beep_state = !beep_state;beep_switch(beep_state);led_state = !led_state;led_switch(LED_0, led_state);}/* 清除EPITx_ISR 中断标志位 */EPIT1->SR |= (1 << 0);
}

3. 编译烧写SD卡验证按键EPIT定时器中断实验结果

译修改主频后源码烧录SD卡验证本节的EPIT定时器实验是否生效。预期烧录SD卡后正点原子I.MX6ULL ALPHA/Mini 开发板会周期性的每500ms鸣叫一次。

我本地验证的结果是EPIT定时器正常工作每500ms触发一次EPIT输出比较事件中断在EPIT定时器中断里翻转一次蜂鸣器的开关,蜂鸣器正常鸣叫。

4. 总结和实验遇到的问题记录

4.1 问题1:EPIT定时器驱动程序烧录SD,开发板上电需要等待大概1分钟之后蜂鸣器才会开始按照500ms的间隔鸣叫。

对照正点原子的示例源码找到了问题原因:

原因:忘记了配置EPITx->CR寄存器的ENMODE bit[1] 位置1,这样CR寄存器 ENMOE=0,EPIT计数寄存器就使用上一次残留的寄存器值开始向下递减,可能是从0XFFFFFFFF 开始递减的所以需要等待大概1分钟才能递减到 0.

 5. 结束

本文至此结束

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/13952.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js是单线程还是多线程,为什么是线程而不是进程

JavaScript 在浏览器环境中主要是单线程的&#xff0c;而在 Node.js 环境中&#xff0c;虽然 JavaScript 代码本身仍然是在单线程中执行的&#xff0c;但 Node.js 底层利用了多线程来处理 I/O 操作等异步任务。 下面我会解释为什么 JavaScript 在浏览器环境中主要是单线程&…

再谈Google I/O 2024:开发者必看亮点

在2024年Google I/O大会上&#xff0c;谷歌发布了许多令人兴奋的新技术和工具。本文将重点介绍其中的三大亮点&#xff1a;新一代TPU、Gemma模型以及Firebase GenKit。这些工具和技术对于开发者来说&#xff0c;将会带来前所未有的便利和强大功能。 新一代TPU&#xff1a;Tril…

centOS7.9 DNS配置

1.DNS规划 dns.sohu.com192.168.110.111Awww.sohucom192.168.110.112Aoa.sohu.com 192.168.110.113A 2.安装 bind yum install -y bind bind-utils 3. 编辑主配置文件 vim /etc/named.conflisten- on port 53 { any; }; allow- query { any; }; 4.配置区域文件 …

在MySQL数据库中的视图和事务。

视图 view 临时表 作用&#xff1a;优化多表查询的效率 可以将经常使用的连接查询结果使用视图进行保存&#xff0c;避免多次重复的笛卡尔积运算 MySQL数据库在多表查询的时候会自动进行笛卡尔积运算。 如果将来经常要用到某一个多表查询的结果就可以使用视图将这个结果…

若依框架二次开发指南:从基础到高级定制

若依框架&#xff08;RuoYi&#xff09;作为一个基于Spring Boot和MyBatis的快速开发平台&#xff0c;其强大的功能和灵活的架构设计使其成为企业级应用开发的理想选择。然而&#xff0c;随着业务需求的不断变化&#xff0c;原生的若依框架可能需要进行一定程度的定制和扩展。本…

前端面试题日常练-day30 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备&#xff0c;答案在文末。 1. 在Vue中&#xff0c;以下哪个选项用于根据条件渲染多个元素&#xff1f; a) v-if b) v-bind c) v-model d) v-for 2. Vue中&#xff0c;以下哪个选项用于在计算属性中处理异步操作&#xff1f…

图生视频 学习笔记

目录 免费文生视频模型还支持4K分辨率——Viva open-sora 潞晨科技 图生视频Runway Pika 文生视频、图生视频 免费文生视频模型还支持4K分辨率——Viva 1、文生视频 2、图生视频 3、视频4K高清 4、区域重绘 5、自动扩图 6、区域抠图 作者&#xff1a;C叔聊历史 https:…

Visual Studio中MP编译参数

MP通常与OpenMP&#xff08;Open Multi-Processing&#xff09;关联&#xff0c;它是用于多平台共享内存并行编程的一个API。 在编译C或C代码时使用OpenMP&#xff0c;通常需要特定的编译参数来启用这一功能。对于GCC和G编译器&#xff0c;这些参数包括&#xff1a; -fopenmp…

Java虚拟机原理(上)-揭秘Java GC黑匣子-知其所以然,从此不再捆手捆脚

对于Java开发者来说&#xff0c;GC(垃圾回收器)就如同一个神秘的黑匣子&#xff0c;它在背后不知疲倦地运作&#xff0c;却也时常给我们带来诸多疑惑和挫折。今天&#xff0c;就让我们切开这个黑匣子&#xff0c;深入解析Java GC的工作原理&#xff0c;助你了解其中的奥秘&…

SpringBoot anyline

1、定义通用处理 public interface ClickHouseBaseService extends IService<DataRow> {/*** 根据sql查询数据库&#xff0c;返回集合对象** param sql 执行sql* return {link DataSet} 数据集*/DataSet querys(String sql);/*** 根据sql查询数据库&#xff0c;返回单个…

云手机在软件测试中的作用,为软件测试工程师减负

针对每家企业来说&#xff0c;对于即将上线的软件进行测试这一步骤是不可忽视的&#xff0c;这决定产品上线后的质量和口碑&#xff1b; 传统的的真机测试可能面临设备大量的采购&#xff0c;管理和维护的成本提高&#xff0c;现在不少企业都开始用云手机来代替真机&#xff0…

24.zabbix高可用

环境准备 准备三台机器 主机名字IP地址软件环境zabbix-server01192.168.111.70httpdphpkeepalivedsshpasszabbix serveragentzabbix-server02192.168.111.71httpdphpkeepalivedsshpasszabbix serveragentzabbix-agent192.168.111.80zabbix agentmysql VIP规划&#xff1a;19…

AWS计算之Batch

AWS Batch是亚马逊提供的一项批量计算服务&#xff0c;旨在帮助用户高效地处理大规模的计算工作负载。AWS Batch可以自动调度、运行和监控批处理作业&#xff0c;用户无需管理底层的计算资源&#xff0c;可以专注于编写和提交作业。AWS Batch提供了灵活的配置选项&#xff0c;包…

《Ai-企业知识库》-讨论、构思01

阿丹&#xff1a; 经过几天的Ai学习&#xff0c;开始对于整个大模型&#xff0c;开始有清晰的认知了。开始准备上手操作&#xff0c;编程自己去写一些东西了。 什么是会话AI? 一个计算机程序&#xff0c;允许人类使用各种输入方法&#xff0c;如语音&#xff0c;文字&#x…

使用STM32F103读取TF卡并模拟U盘:使用标准库实现

使用STM32F103读取TF卡并模拟U盘&#xff1a;使用标准库实现 STM32F103是一款流行的ARM Cortex-M3微控制器&#xff0c;在嵌入式系统中广泛应用。本文将介绍如何使用STM32F103读取TF卡&#xff0c;并将其模拟成U盘&#xff0c;让电脑可以读取TF卡的内容。我们将使用标准库&…

Spring常见问题

如何理解spring属于低侵入式设计&#xff1f; 在代码中不需要写明具体依赖对象&#xff0c;在运行时进行自动注入&#xff0c;降低了组件的耦合依赖的是接口&#xff0c;而接口的实现类具有拓展性 Spring IOC 实现了什么功能&#xff0c;谈谈你对IOC的理解。 负责创建对象&…

【云原生】K8s管理工具--Kubectl详解(一)

一、陈述式管理 1.1、陈述式资源管理方法 kubernetes 集群管理集群资源的唯一入口是通过相应的方法调用 apiserver 的接口kubectl 是官方的 CLI 命令行工具&#xff0c;用于与 apiserver 进行通信&#xff0c;将用户在命令行输入的命令&#xff0c;组织并转化为apiserver 能识…

Elasticsearch集群和Logstash、Kibana部署

1、 Elasticsearch集群部署 服务器 安装软件主机名IP地址系统版本配置ElasticsearchElk10.3.145.14centos7.5.18042核4GElasticsearchEs110.3.145.56centos7.5.18042核3GElasticsearchEs210.3.145.57centos7.5.18042核3G 软件版本&#xff1a;elasticsearch-7.13.2.tar.gz 示…

ubuntu18 安装python3.8

在Ubuntu 18.04上安装Python 3.8可以通过以下步骤完成&#xff1a; 1.更新包列表和已安装的包&#xff1a; sudo apt update sudo apt upgrade 2.安装依赖项&#xff1a; sudo apt install -y software-properties-common 3.添加Python 3.8的PPA&#xff08;个人包归档&am…

【Docker系列】 Docker容器具体信息查询

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…