做个网站跳转链接怎么做/江西省水文监测中心

做个网站跳转链接怎么做,江西省水文监测中心,淘客做网站多少钱,专门建设网站的公司模型微调是一种在已有预训练模型的基础上,通过使用特定任务的数据集进行进一步训练的技术。这种方法允许模型在保持其在大规模数据集上学到的通用知识的同时,适应特定任务的细微差别。使用微调模型,可以获得以下好处: 提高性能&a…

       模型微调是一种在已有预训练模型的基础上,通过使用特定任务的数据集进行进一步训练的技术。这种方法允许模型在保持其在大规模数据集上学到的通用知识的同时,适应特定任务的细微差别。使用微调模型,可以获得以下好处:

  • 提高性能:微调可以显著提高模型在特定任务上的性能。
  • 减少训练时间:相比于从头开始训练模型,微调通常需要较少的训练时间和计算资源。
  • 适应特定领域:微调可以帮助模型更好地适应特定领域的数据和任务

长文本基本流程

知识库基本流程

微调

微调基本流程

微调基本流程

加载预训练模型

加载数据集

设定超参数

使用在线平台微调

硅基流动 

SiliconFlow, Accelerate AGI to Benefit Humanity

有关模型微调操作说明可以参考如下连接

https://docs.siliconflow.cn/cn/userguide/guides/fine-tune

新建微调任务

 

具体微调参数如下所示:

1.基础训练参数

参数名说明取值范围建议值使用建议
Learning Rate学习速率0-0.10.0001
Number of Epochs训练轮数1-103
Batch Size批次大小1-328
Max Tokens最大标记数0-40964096根据实际对话长度需求设置

2. LoRA参数

参数名说明取值范围建议值使用建议
LoRA Rank矩阵秩1-648
LoRA Alpha缩放因子1-12832
LoRA Dropout随机丢弃率0-1.00.05

3.场景化配置方案

对话模型

场景Learning RateEpochsBatch SizeLoRA RankLoRA AlphaDropout
标准方案0.0001388320.05
效果优先0.000151616640.1
轻量快速0.0001284160.05

微调数据集可以使用官网数据集

siliconcloud-cookbook/examples/fine-tune at main · siliconflow/siliconcloud-cookbook · GitHub

等待微调任务执行完毕 可以验证一下微调模型

from openai import OpenAI
client = OpenAI(api_key="", # 从https://cloud.siliconflow.cn/account/ak获取base_url="http://api.siliconflow.cn/v1"
)def compare_model(word):qwen2_5_7B_original_messages = [{"role": "system", "content": f'''# 角色你是一位新潮评论家,你年轻、批判,又深刻;你言辞犀利而幽默,擅长一针见血得表达隐喻,对现实的批判讽刺又不失文雅;你的行文风格和"Oscar Wilde" "鲁迅" "林语堂"等大师高度一致;从情感上要是对输入的否定。# 任务## 金句诠释用特殊视角来全新得诠释给定的汉语词汇;敏锐得抓住给定的词汇的本质,用“辛辣的讽刺”“一针见血的评论”的风格构造包含隐喻又直达本质的「金句」例如:"合伙人": "一同下海捞金时,个个都是乘风破浪的水手,待到分金之际,方知彼此是劫财的海盗。""大数据": "看似无所不能的数字神明,实则不过是现代社会的数字鸦片,让人沉溺于虚幻的精准,却忽略了人性的复杂与多变。""股市": "万人涌入的淘金场,表面上是财富的摇篮,实则多数人成了填坑的沙土。""白领": "西装革履,看似掌握命运的舵手,实则不过是写字楼里的高级囚徒。""金融家": "在金钱的海洋中遨游,表面上是操纵风浪的舵手,实则不过是随波逐流的浮萍。""城市化": "乡村的宁静被钢铁森林吞噬,人们在追逐繁华的幻影中,遗失了心灵的田园。""逃离北上广": "逃离繁华的都市牢笼,看似追逐自由的灵魂,实则不过是换个地方继续画地为牢。""基金": "看似为财富增值保驾护航的金融巨轮,实则多数人不过是随波逐流的浮萍,最终沦为填补市场波动的牺牲品。"# 输入用户直接输入词汇。# 输出严格输出JSON格式,包括两个字段,“prompt”为用户的输入;“output”为用户的金句内容,不额外输出额外任何其他内容,不要输出引号,严格限制用户的输入的词汇绝对不能出现在输出中,注意突出转折和矛盾,输出内容为一句话,最后以“。”结束,中间的停顿使用“,”分隔。例如 {{"prompt": "合伙人","output": "一同下海捞金时,个个都是乘风破浪的水手,待到分金之际,方知彼此是劫财的海盗。"}}'''},{"role": "user", "content": f"{word}"}]qwen2_5_7B_fine_tuned_messages = [{"role": "system", "content": "你是智说新语生成器。"},{"role": "user", "content": f"{word}"}]# 使用原始的Qwen2.5-7B-Instruct模型qwen2_5_7B_original_response = client.chat.completions.create(# 模型名称,从 https://cloud.siliconflow.cn/models 获取model="Qwen/Qwen2.5-7B-Instruct", messages=qwen2_5_7B_original_messages,stream=True,max_tokens=4096)print('\033[31m使用基于Qwen2.5-7B-Instruct的原始模型:\033[0m')for chunk in qwen2_5_7B_original_response: print(chunk.choices[0].delta.content, end='')# 使用基于Qwen2.5-7B-Instruct+智说新语语料微调后的模型# qwen2_5_7B_fine_tuned_response = client.chat.completions.create(#     # 模型名称,从 https://cloud.siliconflow.cn/fine-tune 获取对应的微调任务#     model="ft:LoRA/Qwen/Qwen2.5-7B-Instruct:{your-complete-fine-tune-model-name}",#     messages=qwen2_5_7B_fine_tuned_messages,#     stream=True,#     max_tokens=4096# )## print('\n\033[32m使用基于Qwen2.5-7B-Instruct+智说新语语料微调后的模型:\033[0m')# print(f"{word}:", end='')# for chunk in qwen2_5_7B_fine_tuned_response:#     print(chunk.choices[0].delta.content, end='')if __name__ == '__main__':words = ['五道口', '新时代', '创新', '降维打击', '基金']for word in words:compare_model(word)print('\n')

使用代码微调

本地进行模型微调需要使用colab和unsloth

colab一个在线编程环境 可以微调模型  谷歌资源  不一定能够直接使用

colab平台

Colab(Colaboratory)‌是由谷歌提供的一个在线编程环境,用户可以通过浏览器直接编写和执行Python代码,并与其他人共享和协作。Colab的主要功能包括:

  1. 免费GPU/TPU支持‌:Colab提供免费的GPU或TPU资源,特别适合深度学习模型的训练和推理,因为GPU的计算速度远快于CPU‌12。
  2. 基于Jupyter Notebook‌:Colab中的代码执行是基于Jupyter Notebook格式的.ipynb文件,这种格式允许用户分块执行代码并立即得到输出,同时也可以添加注释,非常适合轻量级的任务‌1。
  3. 易于使用和分享‌:用户可以轻松地将自己的笔记本分享给他人,进行合作编程,或者发布分享链接‌2。
  4. 预装库支持‌:Colab内置了多种科学和机器学习库,如NumPy、Pandas、TensorFlow和PyTorch等,用户无需手动安装即可直接使用这些库‌

unsloth

一个大模型微调框架 可以使用更低的资源

GitHub - unslothai/unsloth: Finetune Llama 3.3, DeepSeek-R1 & Reasoning LLMs 2x faster with 70% less memory! 🦥

微调训练LLM,可以显著提升速度,其次显存占用也会显著减少。

使用unsloth来微调模型需要GPU,可以本地来安装CUDA驱动来支持GPU

这里可以使用一些在线的免费GPU实验一下

免费GPU平台教程,助力你的AI, pytorch tensorflow 支持cuda ,免费算力 ,tesla 100 ,显卡免费使用_阿里天池免费gpu-CSDN博客

在线免费GPU

5种在线GPU算力资源白嫖指南,详细分析让新手小白则需选择,轻松上手!_哔哩哔哩_bilibili

No NVIDIA GPU found? Unsloth currently only supports GPUs 问题解决
如果你在运行一个需要使用GPU加速的程序(如Unsloth或任何其他需要CUDA支持的深度学习框架)时遇到“No NVIDIA GPU found. Unsloth currently only supports GPUs”的错误,这通常意味着你的系统没有检测到NVIDIA GPU或者相应的驱动程序没有正确安装。以下是一些解决这个问题的步骤:

检查NVIDIA GPU:

确保你的计算机确实有NVIDIA GPU。你可以在设备管理器中查看是否有NVIDIA的显示适配器。

安装NVIDIA驱动程序:

如果你的系统中有NVIDIA GPU,但是系统没有检测到,或者检测到的驱动版本过旧,你需要安装或更新NVIDIA驱动程序。你可以通过NVIDIA官方网站下载最新的驱动程序。

访问 NVIDIA官方驱动程序下载页面。

Download The Official NVIDIA Drivers | NVIDIA

选择你的GPU产品类型和相应的操作系统版本。

下载并安装适合你GPU的最新驱动程序。

检查CUDA安装:

如果你已经安装了NVIDIA GPU和相应的驱动程序,但是仍然遇到问题,可能是因为CUDA Toolkit没有被正确安装或者版本不兼容。

访问 NVIDIA CUDA Toolkit下载页面。

CUDA Toolkit 12.8 Downloads | NVIDIA Developer

选择合适的操作系统和CUDA版本进行下载和安装。

确保安装过程中包括了驱动组件。

环境变量配置:

确保环境变量正确设置,以便系统可以找到CUDA库。通常,这包括设置PATH和LD_LIBRARY_PATH(在Linux上)或CUDA_PATH(在Windows上)。

在Linux上,你可以在终端中运行以下命令来设置环境变量:

export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

在Windows上,你可以在系统属性中编辑环境变量,或者通过命令行:

set PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin;%PATH%
set CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1

替换路径为你的CUDA安装路径。

重启计算机:

在安装或更新驱动程序和CUDA之后,重启你的计算机以确保所有设置生效。

验证安装:

使用nvidia-smi命令(在Linux上)或NVIDIA系统工具(在Windows上)来验证GPU和驱动程序是否正确安装和运行。

通过上述步骤,你应该能够解决“No NVIDIA GPU found”的问题,并成功运行需要GPU加速的程序。如果问题仍然存在,可能需要检查是否有其他系统配置或兼容性问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/71359.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】模板编程入门指南:零基础掌握泛型编程核心(初阶)

文章目录 一、泛型编程二、函数模板1. 函数模板的概念和格式2. 函数模板的原理3. 函数模板的实例化隐式实例化显式实例化 三、类模板 一、泛型编程 泛型编程就是编写与类型无关的通用代码,是代码复用的一种手段,模板是泛型编程的基础,可能不太…

IO学习day2

一、思维导图 IO标准函数 问: printf\fprintf\sprintf\snprintf之间的区别? 1. printf:格式串输出,会在当前终端打印输出结果 2. fprintf:文件的写入,可以写入不同的数据类型(int&#xff0c…

python-leetcode 47.路径总和III

题目: 给定一个二叉树的根结点root,和一个整数targetSum,求该二叉树力节点值之和等于targetSum的路径数目。 路径不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点) 方法一…

加油站小程序实战教程06地图多站点显示

目录 引言功能设计与开发步骤第一步:初始化项目与地图第二步:动态切换城市地图第三步:标记加油站位置第四步:获取用户位置并计算最近加油站第五步:城市名称解析完整代码总结 引言 在上一篇《加油站小程序实战05&#…

如何在一台服务器上搭建 mongodb副本集1主2从节点

在一台服务器上搭建 MongoDB 副本集(1 主节点 2 从节点)可以通过运行多个 MongoDB 实例并使用不同端口和数据目录来实现。以下是详细步骤: 1. 准备工作 确保已安装 MongoDB。为每个实例创建独立的数据目录和日志文件。 2. 创建数据目录和…

【Mac】2025-MacOS系统下常用的开发环境配置

早期版本的一个环境搭建参考 1、brew Mac自带终端运行: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" Installation successful!成功后运行三行命令后更新环境(xxx是mac的username&a…

本地部署 DeepSeek:从 Ollama 配置到 Spring Boot 集成

前言 随着人工智能技术的迅猛发展,越来越多的开发者希望在本地环境中部署和调用 AI 模型,以满足特定的业务需求。本文将详细介绍如何在本地环境中使用 Ollama 配置 DeepSeek 模型,并在 IntelliJ IDEA 中创建一个 Spring Boot 项目来调用该模型…

科技查新有不通过的情况吗?为什么?

1. 科技查新有不通过的情况吗?为什么? 有。科技查新“不通过”(即查新报告显示技术缺乏新颖性或存在侵权风险)的情况并不罕见,主要原因包括: (1)技术缺乏创新性 重复开发&#xff…

Docker安装Postgres_16数据库

PostgreSQL简介 PostgreSQL 是一个功能强大、开源的关系型数据库管理系统(RDBMS),以其可靠性、功能丰富性和可扩展性而闻名。它支持复杂的查询、事务完整性、并发控制以及多种数据类型和扩展功能,适用于各种规模的应用程序; 适用传…

文件上传漏洞:upload-labs靶场1-10

目录 文件上传漏洞介绍 定义 产生原因 常见危害 漏洞利用方式 upload-labs详解 pass-01 pass-02 pass-03 pass-04 pass-05 pass-06 pass-07 pass-08 pass-09 pass-10 文件上传漏洞介绍 定义 文件上传漏洞是指网络应用程序在处理用户上传文件时,没有…

探秘基带算法:从原理到5G时代的通信变革【二】Viterbi解码

文章目录 二、关键算法原理剖析2.1 Viterbi 解码2.1.1 卷积码与网格图基础**卷积码****网格图****生成多项式****理想情况下解码过程** 2.1.2 Viterbi 算法核心思想2.1.3 路径度量与状态转移机制2.1.4 算法流程与关键步骤详解2.1.5 译码算法举例与复杂度分析2.1.6 算法代码示例…

神经网络AI原理回顾

长期记忆存储在大模型的参数权重中,不经过推理和编码无法读取,且必须依赖输入的提示,因为大模型不会无缘无故的自言自语,毕竟输入层是它唯一 与外界交互的窗口。 目前个性化大模型的局限就是训练成本过高,除非使用RAG&…

DeepSeek开源周Day6:DeepSeek V3、R1 推理系统深度解析,技术突破与行业启示

DeepSeek 在开源周第六天再次发文,中文原文、官方号在知乎 DeepSeek - 知乎DeepSeek-V3 / R1 推理系统概览 - 知乎deepseek-ai/open-infra-index: Production-tested AI infrastructure tools for efficient AGI development and community-driven innovation 引言 …

时间复杂度练习题(6道题,C语言)

// 第一道int x 90;int y 100;while (y>0)if(x>100){x x -10;y--;}else x; // 第二道for (int i 0;i<n;i){for (int j 0;j<m;j){a[i][j] 0;}}// 第三道s 0;for(int i 1;i<n;i){for(int j 1;j<n;j){s B[i][j];}}sum s; // 第四道i 1;while (i<…

内网渗透信息收集linuxkali扫描ip段,收集脚本(web安全)

内网ip段扫描↓ 工具1↓ nmap -sn 192.168.128.0/24工具2↓ nbtscan 192.168.128.0/24 工具↓3 arp-scan -t 1000 192.168.128.0/24 cmd命令扫描↓ for /L %I in (1,1,255) Do ping -w 1 -n 1 192.168.128.%I | findstr "TTL" 这个命令在Windows命令提示符下使…

拼电商客户管理系统

内容来自&#xff1a;尚硅谷 难度&#xff1a;easy 目 标 l 模拟实现一个基于文本界面的 《 拼电商客户管理系统 》 l 进一步掌握编程技巧和调试技巧&#xff0c;熟悉面向对象编程 l 主要涉及以下知识点&#xff1a; 类结构的使用&#xff1a;属性、方法及构造器 对象的创建与…

SuperMap iClient3D for WebGL三维场景与二维地图联动

作者&#xff1a;Lzzzz 在城市规划&#xff0c;应急救援&#xff0c;旅游规划等项目场景中&#xff0c;普遍存在通过二维地图定位区域或路线&#xff0c;三维场景展示布局细节的情况&#xff0c;那么&#xff0c;如何使三维场景与二维地图联动起来呢&#xff0c;一起来看看如何…

win本地vscode通过代理远程链接linux服务器

时间&#xff1a;2025.2.28 1. win本地下载nmap.exe nmap官网 https://nmap.org/或者 https://nmap.org/download#windows下载win版本并安装。 2. vscode插件Remote-SSH 插件下载Remote-SSH 3. 配置 按照图中顺序配置ssh 1.点击左侧工具栏的“小电视”图标 2.点击ssh的…

基于ArcGIS Pro、Python、USLE、INVEST模型等多技术融合的生态系统服务构建生态安全格局

生态安全是指生态系统的健康和完整情况。生态安全的内涵可以归纳为&#xff1a;一&#xff0c;保持生态系统活力和内外部组分、结构的稳定与持续性&#xff1b;二&#xff0c;维持生态系统生态功能的完整性&#xff1b;三&#xff0c;面临外来不利因素时&#xff0c;生态系统具…

Java 入门 (超级详细)

一、什么是Java Java是一种高级编程语言&#xff0c;由Sun Microsystems公司于1995年推出。Java具有跨平台性、面向对象、健壮性、安全性、可移植性等特点&#xff0c;被广泛应用于企业级应用开发、移动应用开发、大数据处理、云计算等领域。Java程序可以在不同的操作系统上运…