wordpress 4.8教程/跟我学seo从入门到精通

wordpress 4.8教程,跟我学seo从入门到精通,wordpress的html,wordpress 图片 模糊操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 cv::ml::RTrees 是 OpenCV 机器学习模块中的一部分,用于实现随机森林(Random Forests)算法。随机森林是一种集…
  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::ml::RTrees 是 OpenCV 机器学习模块中的一部分,用于实现随机森林(Random Forests)算法。随机森林是一种集成学习方法,它通过构建多个决策树并将它们的结果进行汇总来提高预测准确性和控制过拟合。

主要特点

  • 分类与回归:既可以用于分类任务也可以用于回归任务。
  • 高准确性:由于其集成的特性,通常能够提供比单个决策树更高的预测准确性。
  • 抗过拟合能力强:通过随机选择特征和样本,随机森林能有效减少过拟合的风险。
  • 易于使用:相对简单易用,且不需要太多的参数调整即可获得良好的性能。

常用成员函数

以下是一些常用的 cv::ml::RTrees 类成员函数:

  • 创建模型实例
    • Ptr create():创建一个新的 RTrees 模型实例。
  • 设置模型参数
    • setTermCriteria(TermCriteria val):设置终止条件(例如最大迭代次数或最小误差变化量)。
    • setMaxDepth(int val):设置每棵树的最大深度。
    • setMinSampleCount(int val):设置分裂节点所需的最小样本数。
    • setRegressionAccuracy(float val):设置回归模式下的精度要求。
    • setUseSurrogates(bool val):设置是否使用代理分裂规则处理缺失值。
    • setPriors(Mat val):设置先验概率。
    • setCalculateVarImportance(bool val):设置是否计算变量重要性。
    • setActiveVarCount(int val):设置每棵树在每个节点上考虑的特征数量。

训练模型

  • train(const Ptr& trainData, int flags=0):使用提供的训练数据进行训练。
  • train(InputArray samples, int layout, InputArray responses):另一种形式的训练函数,直接接受样本和响应矩阵作为输入。

预测

  • predict(InputArray samples, OutputArray results=noArray(), int flags=0) const:对新样本进行预测,并返回每个样本的类别标签或预测值(取决于标志)。

保存与加载模型

  • save(const String& filename):将模型保存到文件。
  • load(const String& filename):从文件加载模型。

代码示例

#include <iostream>
#include <opencv2/ml.hpp>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace cv::ml;
using namespace std;int main()
{// 准备训练数据Mat samples = ( Mat_< float >( 4, 2 ) << 0.5, 1.0, 1.0, 1.5, 2.0, 0.5, 1.5, 0.0 );Mat responses = ( Mat_< int >( 4, 1 ) << 0, 0, 1, 1 );// 确保数据和标签是正确的类型if ( samples.type() != CV_32F ){samples.convertTo( samples, CV_32F );}if ( responses.type() != CV_32S ){  // 对于分类任务,标签通常是整数类型responses.convertTo( responses, CV_32S );}// 创建并配置 RTrees 模型Ptr< RTrees > rf_model = RTrees::create();rf_model->setMaxDepth( 10 );       // 设置每棵树的最大深度rf_model->setMinSampleCount( 2 );  // 设置分裂节点所需的最小样本数TermCriteria criteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 100, 0.01 );rf_model->setTermCriteria( criteria );  // 设置终止条件// 使用TrainData创建训练数据对象Ptr< TrainData > trainData = TrainData::create( samples, ROW_SAMPLE, responses );// 训练模型bool ok = rf_model->train( trainData );if ( ok ){// 保存模型rf_model->save( "rf_model.yml" );// 对新样本进行预测Mat sample     = ( Mat_< float >( 1, 2 ) << 1.6, 0.7 );float response = rf_model->predict( sample );cout << "The predicted response for the sample is: " << response << endl;}else{cerr << "Training failed!" << endl;}return 0;
}

运行结果

The predicted response for the sample is: 1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70475.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Dify将AI机器人嵌入到你的前端页面中及chrome的扩展应用

目录 1 博主有话说2 前提环境3 Dify创建个聊天助手应用4 将AI聊天机器人嵌入到html中5 将AI聊天机器人设置为chrome的扩展应用6 博主增语 1 博主有话说 那博主话不多说&#xff0c;先展示一下成果&#xff01; 这个界面是使用dify配置的一个“聊天助手”的应用&#xff0c;助…

I2C实践开发 ---【STM32-I2C-HDC1080温湿度采集系统】

I2C实践开发 — STM32-I2C-HDC1080温湿度采集系统 目录 I2C实践开发 --- STM32-I2C-HDC1080温湿度采集系统1. 引言2. 系统架构2.1 硬件架构2.2 软件架构 3. 代码分析3.1 I2C驱动文件 (i2c.h 和 i2c.c)3.2 HDC1080传感器驱动文件 (hdc1080.h 和 hdc1080.c) 4. 功能总结【HDC1080…

蓝桥杯好数

样例输入&#xff1a; 24 输出&#xff1a;7 输入&#xff1a;2024 输出&#xff1a; 150 思路&#xff1a;本题朴素方法的时间复杂度是O(n * log10(n)) &#xff0c;不超时。主要考察能否逐位取数&#xff0c;注意细节pi&#xff0c;这样不会改变i,否则会导致循环错误。 #in…

Linux-Ansible命令

文章目录 常用命令基础命令 &#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f916;Linux专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2025年02月21日18点49分 常用命令 ansible #主命令&#xff0c;管理员临时命令的执行工具 ansible-doc #…

ESP32 websocket-client

本文简介 ESP-IDF WebSocket-Client 实验平台 ①ESP-IDF 版本&#xff1a;release/v5.3.2 ③硬件平台&#xff1a;esp32-s3 版权声明 ①作者&#xff1a;coLin ②声明&#xff1a;问题总结&#xff0c;有误解&#xff0c;请联系纠正。 正文 1、基于 esp-idf 如何使用 …

网络安全设备防护原理 网络安全防护装置

&#x1f345; 点击文末小卡片 &#xff0c;免费获取网络安全全套资料&#xff0c;资料在手&#xff0c;涨薪更快 防火墙 简介 网络层的防护设备&#xff0c;依照特殊的规则允许或者限制传输的数据通过 是由软件和硬件设备组合而成&#xff0c;在内部网和外部网之间、专用网…

蓝桥杯15 填空题

1.握手问题&#xff1a; 思路&#xff1a;首先当所有人都握过手&#xff0c;由于一次握手相当于两个人都握手过&#xff0c;所以容易发现这是一个组合问题&#xff0c;为&#xff08;50*49&#xff09;/2&#xff0c;而其中有7个人没有相互握过手&#xff0c;那么减去&#xff…

HTML项目一键打包工具:HTML2EXE 最新版

HTML2EXE 工具可以一键打包生成EXE可执行文件。可以打包任意HTML项目或者是一个网址为单个EXE文件&#xff0c;直接打开即可运行。支持KRPano全景VR项目、WebGL游戏项目、视频播放、,课件打包、网址打包等。 一、功能特点 类别序号功能标题1支持程序图标自定义&#xff08;支持…

紧随“可信数据空间”政策风潮,数造科技正式加入开放数据空间联盟

在全球数字化转型加速的背景下&#xff0c;数造科技凭借前瞻性战略眼光&#xff0c;正式加入开放数据空间联盟&#xff08;ODSA&#xff09;。这一决策&#xff0c;不仅是公司发展历程中的重要一步&#xff0c;更是我们积极响应行业发展趋势&#xff0c;致力于推动数据产业创新…

开源免费文档翻译工具 可支持pdf、word、excel、ppt

项目介绍 今天给大家推荐一个开源的、超实用的免费文档翻译工具&#xff08;DeeplxFile&#xff09;&#xff0c;相信很多人都有需要翻译文档的时刻&#xff0c;这款工具就能轻松解决你的需求。 它支持多种文档格式翻译&#xff0c;包括 Word、PDF、PPT、Excel &#xff0c;使…

巧用GitHub的CICD功能免费打包部署前端项目

近年来&#xff0c;随着前端技术的发展&#xff0c;前端项目的构建和打包过程变得越来越复杂&#xff0c;占用的资源也越来越多。我有一台云服务器&#xff0c;原本打算使用Docker进行部署&#xff0c;以简化操作流程。然而&#xff0c;只要执行sudo docker-compose -f deploy/…

Python之装饰器二 带参数的装饰器

前言一、带参数的装饰器二、在装饰器里面传入参数总结 前言 暂无 一、带参数的装饰器 我们知道&#xff0c;不带参数的装饰其实就是在函数的头上添加装饰器时放一个名称&#xff0c;这种写法就默认了装饰器函数调的是被装饰函数自己&#xff0c;换句话说就是&#xff0c;大家…

Linux文件系统与磁盘存储

目录 一、磁盘基础 二、磁盘的结构与工作原理 1. 磁盘的物理结构 2. 磁盘的工作原理 &#x1f352;磁道与扇区 &#xff1a; &#x1f347;磁盘如何找数据&#xff1f; 3. 磁盘的应用场景 &#x1f335;个人电脑 &#x1f33b;公司服务器 4. 逻辑块地址&#xff08;LB…

进程线程的创建、退出、回收

1. 进程相关知识点 1.1 进程创建 fork()&#xff1a; 功能&#xff1a;创建一个子进程。 返回值&#xff1a; 父进程中返回子进程的 PID。 子进程中返回 0。 失败返回 -1。 特点&#xff1a;子进程是父进程的副本&#xff0c;拥有独立的内存空间。 vfork()&#xff1a;…

解耦的艺术_应用架构中的解耦

文章目录 Pre解耦的技术演化应用架构中的解耦小结 Pre 解耦的艺术_通过DPI依赖倒置实现解耦 解耦的艺术_通过中间层映射实现解耦 解耦的技术演化 技术的演化史&#xff0c;也是一部解耦的历史。从最初的面向对象编程&#xff08;OOP&#xff09;到Spring框架的依赖注入&…

机器学习实战(5):决策树与随机森林——直观的分类与回归方法

第5集&#xff1a;决策树与随机森林——直观的分类与回归方法 在机器学习中&#xff0c;决策树&#xff08;Decision Tree&#xff09; 和 随机森林&#xff08;Random Forest&#xff09; 是两种直观且强大的算法&#xff0c;广泛应用于分类和回归任务。决策树通过一系列规则…

网站中内嵌腾讯元宝用deepseek

网站中内嵌元宝deepseek <!doctype html> <html lang="en"> <head> <meta charset="UTF-8"> <title>BING搜</title> <meta name="description" content="不用学习就G搜索高级语法,即选即用…

draw.io:开源款白板/图表绘制利器

在工作和学习中&#xff0c;我们常常需要绘制各种图表&#xff0c;例如流程图、思维导图、网络拓扑图等等。一款功能强大且易于上手的图表绘制工具可以极大地提高我们的效率。今天&#xff0c;我要向大家推荐一款开源免费的图表绘制工具—— draw.io&#xff0c;并手把手教你如…

基于eBPF的全栈可观测性系统:重新定义云原生环境诊断范式

引言&#xff1a;突破传统APM的性能桎梏 某头部电商平台采用eBPF重构可观测体系后&#xff0c;生产环境指标采集性能提升327倍&#xff1a;百万QPS场景下传统代理模式CPU占用达63%&#xff0c;而eBPF直采方案仅消耗0.9%内核资源。核心业务的全链路追踪时延从900μs降至18μs&a…

图解MySQL【日志】——Binlog

Binlog&#xff08;Binary Log&#xff0c;归档日志&#xff09; 为什么需要 Binlog&#xff1f; Binlog 是 MySQL 中的二进制日志&#xff0c;用于记录数据库的所有写操作&#xff08;INSERT、UPDATE、DELETE 等&#xff09; 1. 主从复制 作用&#xff1a;是 MySQL 主从复…