呼市网站建设公司/免费关键词挖掘工具

呼市网站建设公司,免费关键词挖掘工具,网站后台凡科建设,wordpress 资源站模板前言一、带参数的装饰器二、在装饰器里面传入参数总结 前言 暂无 一、带参数的装饰器 我们知道,不带参数的装饰其实就是在函数的头上添加装饰器时放一个名称,这种写法就默认了装饰器函数调的是被装饰函数自己,换句话说就是,大家…

  • 前言
  • 一、带参数的装饰器
  • 二、在装饰器里面传入参数
  • 总结


前言

暂无


一、带参数的装饰器

我们知道,不带参数的装饰其实就是在函数的头上添加装饰器时放一个名称,这种写法就默认了装饰器函数调的是被装饰函数自己,换句话说就是,大家一致认同的这种规则了,@装饰器 这种表示法就是要调被装饰函数自己。

那么这种表示是在一层闭包实现的,那么有2层闭包又实现了什么呢?

答:两层闭包就实现了装饰器带参数。

# 装饰器带参数
import time
from functools import wrapsdef my_timer(parm):def timer(func):@wraps(func)def decorate(*args, **kwargs):if parm == 1:print("这是func1")start_time = time.time()func(*args, **kwargs)end_time = time.time()total = end_time - start_timeprint("函数运行时间:", total)elif parm == 2:print("这是func2")start_time = time.time()func(*args, **kwargs)end_time = time.time()total = end_time - start_timeprint("函数运行时间:", total)return decoratereturn timer@my_timer(2)  # 装饰器带参数
def func1():time.sleep(2)func1()

那我们分析一下,当我们使用一层闭包的时候,在外面被装饰的函数的头上只放一个装饰器函数。

举例:

我们现在就一层闭包(在这里只是演示,实际上这个代码是跑不起来的),一层闭包的写法和在函数头上的写法前面的知识已经解释过了。

假设第二层闭包能够用的情况下,那么在函数头上的表现是:

二、那么如果要在装饰器里面传入参数怎么做呢?

那就直接在一层的闭包外,再加一层闭包,这一层闭包的作用就是用来传参数的,说的通俗一点,就是用来放置外来的参数,这个参数用于里面的闭包。虽然外层的闭包只起了这样的作用,主要的逻辑还是在里面的闭包,不过呢,我们在使用这个闭包的时候,还是要使用外层的函数名,不然我们怎么传入参数呢?


总结

暂无

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70454.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux文件系统与磁盘存储

目录 一、磁盘基础 二、磁盘的结构与工作原理 1. 磁盘的物理结构 2. 磁盘的工作原理 🍒磁道与扇区 : 🍇磁盘如何找数据? 3. 磁盘的应用场景 🌵个人电脑 🌻公司服务器 4. 逻辑块地址(LB…

进程线程的创建、退出、回收

1. 进程相关知识点 1.1 进程创建 fork(): 功能:创建一个子进程。 返回值: 父进程中返回子进程的 PID。 子进程中返回 0。 失败返回 -1。 特点:子进程是父进程的副本,拥有独立的内存空间。 vfork():…

解耦的艺术_应用架构中的解耦

文章目录 Pre解耦的技术演化应用架构中的解耦小结 Pre 解耦的艺术_通过DPI依赖倒置实现解耦 解耦的艺术_通过中间层映射实现解耦 解耦的技术演化 技术的演化史,也是一部解耦的历史。从最初的面向对象编程(OOP)到Spring框架的依赖注入&…

机器学习实战(5):决策树与随机森林——直观的分类与回归方法

第5集:决策树与随机森林——直观的分类与回归方法 在机器学习中,决策树(Decision Tree) 和 随机森林(Random Forest) 是两种直观且强大的算法,广泛应用于分类和回归任务。决策树通过一系列规则…

网站中内嵌腾讯元宝用deepseek

网站中内嵌元宝deepseek <!doctype html> <html lang="en"> <head> <meta charset="UTF-8"> <title>BING搜</title> <meta name="description" content="不用学习就G搜索高级语法,即选即用…

draw.io:开源款白板/图表绘制利器

在工作和学习中&#xff0c;我们常常需要绘制各种图表&#xff0c;例如流程图、思维导图、网络拓扑图等等。一款功能强大且易于上手的图表绘制工具可以极大地提高我们的效率。今天&#xff0c;我要向大家推荐一款开源免费的图表绘制工具—— draw.io&#xff0c;并手把手教你如…

基于eBPF的全栈可观测性系统:重新定义云原生环境诊断范式

引言&#xff1a;突破传统APM的性能桎梏 某头部电商平台采用eBPF重构可观测体系后&#xff0c;生产环境指标采集性能提升327倍&#xff1a;百万QPS场景下传统代理模式CPU占用达63%&#xff0c;而eBPF直采方案仅消耗0.9%内核资源。核心业务的全链路追踪时延从900μs降至18μs&a…

图解MySQL【日志】——Binlog

Binlog&#xff08;Binary Log&#xff0c;归档日志&#xff09; 为什么需要 Binlog&#xff1f; Binlog 是 MySQL 中的二进制日志&#xff0c;用于记录数据库的所有写操作&#xff08;INSERT、UPDATE、DELETE 等&#xff09; 1. 主从复制 作用&#xff1a;是 MySQL 主从复…

进程的介绍--进程状态/切换

1.冯 • 诺依曼体系结构 1.1 体系结构 冯•诺依曼结构也称普林斯顿结构&#xff0c;是一种将程序指令存储器和数据存储器合并在一起的存储器结构。数学家冯•诺依曼提出了计算机制造的三个基本原则&#xff0c;即采用二进制逻辑、程序存储执行以及计算机由五个部分组成&#x…

Python开源项目月排行 2025年1月

#2025年1月2025年2月2日1DeepSeek-R1当红炸子鸡&#xff0c;国人之骄傲&#xff01;项目于 2025 年 1 月 20 日正式发布。早期的预览版&#xff08;如 DeepSeek-R1-Lite-Preview&#xff09;则在 2024 年 11 月 20 日亮相。 用途&#xff1a;DeepSeek-R1 是一个开源的推理模型&…

yolov8改进:efficientViT替换YOLOV8主干网络结构

6.1 efficientViT替换YOLOV8主干网络结构 6.1.1 effivientvit EfficientViT 的架构特点 EfficientViT 是一种结合了 Transformer 和卷积网络优点的轻量级模型&#xff0c;它的设计目标是高效地提取图像特征&#xff0c;同时减少计算量。以下是它的关键组成部分&#xff1a; …

Android Studio安装配置及运行

一、下载Android Studio 官网下载&#xff1a;下载 Android Studio 和应用工具 - Android 开发者 | Android Developers 跳转到下载界面&#xff0c;选择同意条款&#xff0c;并点击下载&#xff0c;如图&#xff1a; 二、详细安装 双击下载的文件 三、配置Android Studio …

OpenHarmony分布式数据管理子系统

OpenHarmony分布式数据管理子系统 简介 目录 组件说明 分布式数据对象数据共享分布式数据服务Key-Value数据库首选项关系型数据库标准数据化通路 相关仓 简介 子系统介绍 分布式数据管理子系统支持单设备的各种结构化数据的持久化&#xff0c;以及跨设备之间数据的同步、…

智能算法如何优化数字内容体验的个性化推荐效果

内容概要 在数字内容体验的优化过程中&#xff0c;个性化推荐系统的核心价值在于通过数据驱动的技术手段&#xff0c;将用户需求与内容资源进行高效匹配。系统首先基于用户行为轨迹分析&#xff0c;捕捉包括点击频次、停留时长、交互路径等关键指标&#xff0c;形成对用户兴趣…

超简单理解KMP算法(最长公共前后缀next数组、合并主子串、子串偏移法)

KMP算法理解 最长公共前后缀next合并主子串子串偏移 参考b站&#xff1a;子串偏移、合并主子串 最长公共前后缀next 这个概念是一个trick&#xff0c;帮助我们记录遍历了一遍的数组的相似特性&#xff0c;想出来确实很nb&#xff0c;我也不理解逻辑是怎么想出来的。 字符串的…

github 怎么创建一个私有repository 并从另外一台电脑拉取下来更新

1.github上新建一个repository 设置为private tips删除在这 点setting 然后往下拖动 会有个这里是用来删项目的 2.另外 一台电脑拉取这个repository的时候 需要配置 一个ssh key 这个key的内容生成参考本地电脑的生成 然后在这配置 2.1 生成 SSH 密钥&#xff08;如果还没有…

LangChain 技术入门指南:探索语言模型的无限可能

在当今的技术领域&#xff0c;LangChain 正逐渐崭露头角&#xff0c;成为开发语言模型应用的强大工具。如果你渴望深入了解并掌握这一技术&#xff0c;那么就跟随本文一起开启 LangChain 的入门之旅吧&#xff01; (后续将持续输出关于LangChain的技术文章,有兴趣的同学可以关注…

小米手环7屏幕脱胶维修

前言 本文仅用于记录维修过程&#xff0c;如有不对请指出&#xff0c;非常感谢&#xff01; 参考视频 https://www.bilibili.com/video/BV1wV4y1H71N/?vd_sourcec887ed704029330114b8b207d8164686 胶水链接 常见的T-8000胶水&#xff0c;随便挑了一个送皮筋的 https://d…

自注意力机制和CNN的区别

CNN&#xff1a;一种只能在固定感受野范围内进行关注的自注意力机制。​CNN是自注意力的简化版本。自注意力&#xff1a;具有可学习感受野的CNN。自注意力是CNN的复杂形态&#xff0c;是更灵活的CNN&#xff0c;经过某些设计就可以变为CNN。 越灵活、越大的模型&#xff0c;需要…

上帝之眼——nmap

nmap介绍 Nmap&#xff08;网络映射器&#xff09;是一款广受欢迎的网络探测和安全评估工具&#xff0c;被誉为“上帝之眼”。它以其强大的扫描功能和广泛的应用场景&#xff0c;成为系统管理员和安全专家手中的得力助手。本文将对Nmap进行详细介绍&#xff0c;包括其优点、基本…