凡科网电脑版怎么做网站/网站制作公司官网

凡科网电脑版怎么做网站,网站制作公司官网,wordpress头部调用代码,做网站济南本文原创作者:姚瑞南 AI-agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权) 目录 一、什么是语言模型? 那么什么是语言模…

本文原创作者:姚瑞南 AI-agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)      

目录

一、什么是语言模型?

那么什么是语言模型?

为何是通讯问题?为何转换成通讯问题后,就能实现语音识别?

那如何解决这个问题?

二、如何计算概率?

第一阶段是统计语言模型(Statistical Language Model,SLM)

第二阶段是神经网络语言模型(Neural Language Model,NLM)

第三阶段是预训练语言模型(Pre-trained Language Model,PLM)

第四阶段是大语言模型(Large Language Model)

三、开发大语言模型需要什么?

关键一:数据​

关键二:算法​

关键三:算力​

四、大语言模型有什么缺点?

缺点一:结果高度依赖训练语料​

缺点二:Hallucinations​

缺点三:暂时只能解决数学问题​


一、什么是语言模型?

大家或多或少都听过 ChatGPT 是一个 LLMs,那 LLMs 是什么

LLMs 全称是 Large Language Models,中文是大语言模型。

那么什么是语言模型?

语言模型简单说来,就是对人类的语言建立数学模型,注意,这里的关键是数学模型,语言模型是一个由数学公式构建的模型,并不是什么逻辑框架。这个认知非常重要。

最早提出语言模型的概念的是贾里尼克博士。

他是世界著名的语音识别和自然语言处理的专家,他在 IBM 实验室工作期间,提出了基于统计的语音识别的框架,这个框架结构对语音和语言处理有着深远的影响,它从根本上使得语音识别有实用的可能。在贾里尼克以前,科学家们把语音识别问题当作人工智能问题和模式匹配问题。而贾里尼克把它当成通信问题。

为何是通讯问题?为何转换成通讯问题后,就能实现语音识别?

根据香农确定的现代通讯原理,所谓的通讯,也被称为信道的编码和解码,信息源先产生原始信息,然后接收方还原一个和原始信息最接近的信息。

比如,你打电话的时候,问对方一句「你吃了晚饭了吗」,在传输前,通讯系统会对这句话进行编码,编成类似「100111101100000…」,但是传输过程中,一定会有信号损失,接收方收到的编码可能是「1001111011000…」,此时我们就没法解码回原来的句子了。

那如何解决这个问题?

我们可以把与接收到的编码「1001111011000…」类似的句子都罗列出来,可能的情况是:

  • 吃了晚饭了吗
  • 你吃了饭了吗
  • 你吃了晚饭了吗
  • 你吃了晚饭了

然后通讯系统会计算出哪一种的可能性最大,最后把它选出来。只要噪音不大,并且传输信息有冗余,那我们就能复原出原来的信息。

贾里尼克博士认为让计算机理解人类的语言,不是像教人那样教它语法,而是最好能够让计算机计算出哪一种可能的语句概率最大。

这种计算自然语言每个句子的概率的数学模型,就是语言模型。

二、如何计算概率?

既然是数学模型,那应该如何计算呢?

最简单的方法,当然就是用统计学的方法去计算了,简单说来,就是靠输入的上下文进行统计,计算出后续词语的概率,比如「你吃了晚饭了吗」,「你吃了」后面按照概率,名词如「饭」或「晚饭」等概率更高,而不太可能是动词,如「睡」「睡觉」。

第一阶段是统计语言模型(Statistical Language Model,SLM)

这是语言模型的第一阶段,模型也被称为是统计语言模型(Statistical Language Model,SLM),其基本思想是基于马尔可夫假设建立词语测模型,根据最近的上下文预测下一个词。

后续语言模型的发展又迭代了三个版本。

统计语言模型是自然语言处理(NLP)中的一种核心技术,主要用于根据单词的历史序列来计算语句的概率。这种模型基于大量的文本数据来学习单词之间的统计规律,从而能够预测接下来可能出现的单词或者生成整个句子。

统计语言模型主要有以下几种类型:

  1. N-gram模型:这是最简单的统计语言模型,它通过计算前N−1N-1个词出现后某个词出现的概率来进行预测。例如,一个三元模型(trigram model)会考虑前两个词来预测第三个词。

  2. 隐马尔可夫模型(HMM):这种模型用于序列数据处理,特别是在语音识别和某些类型的文本处理中,它假设每个单词由一个隐藏的状态生成,而这些状态之间的转移概率是可学习的。

  3. 条件随机场(CRF):这是一种用于预测序列数据标签的统计建模方法,广泛用于命名实体识别和其他NLP任务。

随着技术的进步,基于深度学习的语言模型,如Transformer和BERT,开始取代传统的统计语言模型,提供了更高的准确率和灵活性。这些模型使用大规模的语料库进行预训练,能够捕捉更深层次的语义关系,并在各种NLP任务中表现出色。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70415.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode876.链表的中间结点

目录 问题描述示例提示 具体思路思路一 代码实现 问题描述 给你单链表的头结点 head ,请你找出并返回链表的中间结点。 如果有两个中间结点,则返回第二个中间结点。 题目链接:链表的中间结点 示例 提示 链表的结点数范围是 [1, 100]   1 &…

SpringBoot整合Redis和Redision锁

参考文章 1.Redis 1.导入依赖 <!--Redis依赖--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.apache.c…

C++笔记之标准库中的std::copy 和 std::assign 作用于 std::vector

C++笔记之标准库中的std::copy 和 std::assign 作用于 std::vector code review! 文章目录 C++笔记之标准库中的std::copy 和 std::assign 作用于 std::vector1. `std::copy`1.1.用法1.2.示例2.`std::vector::assign`2.1.用法2.2.示例3.区别总结4.支持assign的容器和不支持ass…

C# 背景 透明 抗锯齿 (效果完美)

主要是通过 P/Invoke 技术调用 Windows API 函数 gdi32.dll/user32.dll&#xff0c;同时定义了一些结构体来配合这些 API 函数的使用&#xff0c;常用于处理图形绘制、窗口显示等操作。 运行查看效果 局部放大&#xff0c;抗锯齿效果很不错,尾巴毛毛清晰可见。 using System; u…

前端常见面试题-2025

vue4.0 Vue.js 4.0 是在 2021 年 9 月发布。Vue.js 4.0 是 Vue.js 的一个重要版本&#xff0c;引入了许多新特性和改进&#xff0c;旨在提升开发者的体验和性能。以下是一些关键的更新和新特性&#xff1a; Composition API 重构&#xff1a;Vue 3 引入了 Composition API 作为…

【工具插件类教学】实现运行时2D物体交互的利器Runtime2DTransformInteractor

目录 ​编辑 1. 插件核心功能 1.1 基础变换操作 1.2 高级特性 2. 安装与配置 2.1 导入插件 2.2 配置控制器参数 2.3 为物体添加交互功能 3. 使用示例 3.1 基础操作演示 3.2 多选与批量操作 3.3 自定义光标与外观 4. 高级配置技巧 4.1 动态调整包围框控件尺寸 4.…

Lineageos 22.1(Android 15)Launcer简单调整初始化配置

一、前言 Launcer的初始化配置主要在如下的xml文件夹下&#xff0c;默认读取的5x5 这里我们把device_profiles调整一下&#xff0c;然后新建一个default_workspace_my.xml作为我们自己的配置就行。 二、配置 注意Lineageos 的Launcer是在lineageos/packages/apps/Trebuchet…

排查JVM的一些命令

查看JVM相关信息的方法 环境&#xff1a; Win10, jdk17 查看端口的Pid netstat -ano | findstr <端口号>列出当前运行的JVM进程 ## 用于输出JVM中运行的进程状态信息。通过jps&#xff0c;可以快速获取Java进程的PID&#xff08;进程标识符&#xff09;&#xff0c; …

DeepSeek 助力 Vue 开发:打造丝滑的瀑布流布局(Masonry Layout)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…

封装一个vue3控制并行任务数量的组合式函数

一. 使用场景 使用环境&#xff1a; vue3 当需要处理多个异步任务时&#xff0c;想要控制并行异步任务的数量&#xff0c;不想所有任务同时执行导致产生性能上的问题&#xff0c; 比如当需要同时发起多个网络请求&#xff0c;但又不想一次性发出过多请求导致服务器压力过大或…

最新华为 HCIP-Datacom(H12-821)2025.2.20

最新 HCIP-Datacom&#xff08;H12-821&#xff09;&#xff0c;完整题库请扫描上方二维码访问。 如图所示为某OSPF网络&#xff0c;已知R1和R2已,成功建立邻接关系&#xff0c;现一工程师在R2上配置了图中命令。那么在R2上查看LSDB时&#xff0c;可能存在以下哪些LSA? A&…

Web自动化之Selenium 超详细教程(python)

Selenium是一个开源的基于WebDriver实现的自动化测试工具。WebDriver提供了一套完整的API来控制浏览器&#xff0c;模拟用户的各种操作&#xff0c;如点击、输入文本、获取页面元素等。通过Selenium&#xff0c;我们可以编写自动化脚本&#xff0c;实现网页的自动化测试、数据采…

如何调用 DeepSeek API:详细教程与示例

目录 一、准备工作 二、DeepSeek API 调用步骤 1. 选择 API 端点 2. 构建 API 请求 3. 发送请求并处理响应 三、Python 示例&#xff1a;调用 DeepSeek API 1. 安装依赖 2. 编写代码 3. 运行代码 四、常见问题及解决方法 1. API 调用返回 401 错误 2. API 调用返回…

基于flask+vue的租房信息可视化系统

✔️本项目利用 python 网络爬虫抓取某租房网站的租房信息&#xff0c;完成数据清洗和结构化&#xff0c;存储到数据库中&#xff0c;搭建web系统对各个市区的租金、房源信息进行展示&#xff0c;根据各种条件对租金进行预测。 1、数据概览 ​ 将爬取到的数据进行展示&#xff…

磐维数据库双中心容灾流复制集群搭建

1. 架构 磐维数据库PanWeiDB V2.0.0基于gs_sdr工具&#xff0c;在不借助额外存储介质的情况下实现跨Region的异地容灾。提供流式容灾搭建&#xff0c;容灾升主&#xff0c;计划内主备切换&#xff0c;容灾解除、容灾状态监控等功能。 2. 部署双中心磐维集群 2.1. 主集群 角色…

Linux应用之构建命令行解释器(bash进程)

目录 1.分析 2.打印输入提示符 3.读取并且处理输入字符串 4.创建子进程并切换 5.bash内部指令 6.完整代码 1.分析 当我们登录服务器的时候&#xff0c;命令行解释器就会自动加载出来。接下来我们就。在命令行中输入指令来达到我们想要的目的。 我们在命令行上输入的…

ETL工具: Kettle入门(示例从oracle到oracle的数据导入)

kettle介绍 ETL工具,用于对数据的抽取&#xff08;Extract), 转换(Transform),加载 (Load&#xff09; Kettle 是一种ETL工具, 现称为 Pentaho Data Integration (PDI) 特点:纯JAVA语言编写 官方学习文档 网站: https://docs.hitachivantara.com/r/en-us/pentaho-data-int…

SQLMesh 系列教程7- 详解 seed 模型

SQLMesh 是一个强大的数据建模和管道管理工具&#xff0c;允许用户通过 SQL 语句定义数据模型并进行版本控制。Seed 模型是 SQLMesh 中的一种特殊模型&#xff0c;主要用于初始化和填充基础数据集。它通常包含静态数据&#xff0c;如参考数据和配置数据&#xff0c;旨在为后续的…

基于大数据的国内高校排名可视化分析及推荐系统

【大数据】基于大数据的国内高校排名可视化分析及推荐系统&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 高校排名一直是教育研究领域的重要课题&#xff0c;具有丰富的理论价值。通过分析和可…

【前端小点】vue3项目内根据主题读取不同文件夹下的图片资源(图片文件)

项目要求实现一键换肤的功能&#xff0c;不仅仅是主题颜色上的替换&#xff0c;还有图片素材的替换&#xff0c;主题颜色替换的方案大同小异&#xff0c;下面仅对图片素材的一件替换进行方法描述。 主要思路 使用本地仓库对当前主题进行存储&#xff0c;系统根据主题去加载不同…