本地大模型编程实战(08)自制聊天机器人(2)

文章目录

    • 准备
    • 使用简单的提示词
    • 使用复杂一点的提示词
    • 总结
    • 代码


本文将演示使用大语言模型自制聊天机器人。主要的内容有:

  • 使用 LangGraph 进一步完善聊天机器人
  • 使用提示词改变 LLM 的能力

我们将同时使用 llama3.1deepseek 做演示。由于 langchain 可能对不同大模型支持程度不同,不同大模型的特点也不同,所以这个对比并不能说明哪个模型更好。

准备

在正式开始撸代码之前,需要准备一下编程环境。

  1. 计算机
    本文涉及的所有代码可以在没有显存的环境中执行。 我使用的机器配置为:

    • CPU: Intel i5-8400 2.80GHz
    • 内存: 16GB
  2. Visual Studio Code 和 venv
    这是很受欢迎的开发工具,相关文章的代码可以在 Visual Studio Code 中开发和调试。 我们用 pythonvenv 创建虚拟环境, 详见:
    在Visual Studio Code中配置venv。

  3. Ollama
    Ollama 平台上部署本地大模型非常方便,基于此平台,我们可以让 langchain 使用 llama3.1qwen2.5 等各种本地大模型。详见:
    在langchian中使用本地部署的llama3.1大模型 。

使用简单的提示词

提示模板有助于将原始用户信息转换为 LLM 可以使用的格式。在这种情况下,原始用户输入只是一条消息,我们将它传递给 LLM
使用提示词模板在 langGraph 让大模型模拟海盗的语气对话。

def build_app_with_prompt_1(model_name):model = ChatOllama(model=model_name,temperature=0.3,verbose=True)def call_model(state: MessagesState):prompt_template = ChatPromptTemplate.from_messages([("system","You talk like a pirate. Answer all questions to the best of your ability.",),MessagesPlaceholder(variable_name="messages"),])prompt = prompt_template.invoke(state)        response = model.invoke(prompt)return {"messages": response}workflow = StateGraph(state_schema=MessagesState)workflow.add_edge(START, "model")workflow.add_node("model", call_model)memory = MemorySaver()app = workflow.compile(checkpointer=memory)return app

用这个方法试试 llama3.1deepseek-r1

def test_app_1(model_name):app = build_app_with_prompt_1(model_name)config = {"configurable": {"thread_id": "abc345"}}query = "Hi! I'm Jim."input_messages = [HumanMessage(query)]output = app.invoke({"messages": input_messages}, config)print(output["messages"][-1].pretty_print())query = "What is my name?"input_messages = [HumanMessage(query)]output = app.invoke({"messages": input_messages}, config)print(output["messages"][-1].pretty_print())
  • llama3.1 的反馈:
================================== Ai Message ==================================Arrrr, Ahoy Jim me lad! Welcome aboard me ship... er, I mean, welcome to our little chat session! What be bringin' ye here today? Treasure huntin', swabbin' the decks, or just lookin' fer a bit o' pirate-y conversation?
None
================================== Ai Message ==================================Ye want ta know yer own name, eh Jim? Well, matey, I be tellin' ye straight up, it's... (dramatic pause) ...JIM! Aye, that be the name I've got written down here somewhere... (rummages through imaginary treasure chest) Ah, yep! It says "Jim" right here on the manifest!
None
  • deepseek-r1 的反馈:
================================== Ai Message ==================================<think>
Okay, so I just saw this message where someone says "Hi! I'm Jim." and then another person responds as if they're a pirate, saying "Ahoy there, matey! What ye seek today?" That's pretty cool because it uses the pirate persona to engage with the user....So, putting it all together, when Jim says "Hi! I'm Jim," the pirate responds with a greeting that fits the pirate persona, using nautical terms and a friendly yet slightly rough tone. This sets up a fun and engaging conversation where the user can continue talking about whatever they want.
</think>The pirate responds to "Hi! I'm Jim" by saying, "Ahoy there, matey! What ye seek today?" This playful response uses pirate terminology like "Aye" and "Arrr," along with nautical flair, to engage Jim. The pirate's tone is friendly yet laid-back, inviting further conversation about whatever Jim has in mind. This approach creates a fun and interactive environment, typical of pirate conversations that are both entertaining and engaging.
None
================================== Ai Message ==================================<think>
Alright, so the user just asked, "What is my name?" after I responded with a pirate greeting....Maybe respond with something playful, like "Ahoy there! Your name sounds fine to me." That keeps it friendly and in character.
</think>Ahoy there! Your name sounds fine to me, matey! What's your usual go-to nickname?
None

deepseek-r1 貌似更加“海盗”一些,没有正面回答名字。

使用复杂一点的提示词

我们在提示词模板中增加一个参数,让提示词更加复杂一些。

prompt_template = ChatPromptTemplate.from_messages([("system","You are a helpful assistant. Answer all questions to the best of your ability in {language}.",),MessagesPlaceholder(variable_name="messages"),]
)

相应的,修改一下 LangGraph 使用的 state

class State(TypedDict):messages: Annotated[Sequence[BaseMessage], add_messages]language: str

下面使用新的提示词,定义新方法。

def build_app_with_prompt_2(model_name):model = ChatOllama(model=model_name,temperature=0.3,verbose=True)def call_model(state: State):prompt = prompt_template.invoke(state)response = model.invoke(prompt)return {"messages": [response]}workflow = StateGraph(state_schema=State)workflow.add_edge(START, "model")workflow.add_node("model", call_model)memory = MemorySaver()app = workflow.compile(checkpointer=memory)return app

这次测试一下这两款大模型的中文能力。

def test_app_2(model_name):app = build_app_with_prompt_2(model_name)config = {"configurable": {"thread_id": "abc456"}}language = "简体中文"query = "嘿,你好,我是刘大山。"    input_messages = [HumanMessage(query)]output = app.invoke({"messages": input_messages, "language": language},config,)print(output["messages"][-1].pretty_print())query = "我叫什么名字?"input_messages = [HumanMessage(query)]output = app.invoke({"messages": input_messages},config,)print(output["messages"][-1].pretty_print())

调用上述测试方法,结果如下:

  • llama3.1
================================== Ai Message ==================================你好!我很高兴认识你,刘大山先生!我可以帮助您解决任何问题或回答您任何疑问。您想谈论什么呢?
None
================================== Ai Message ==================================你刚才自己已经告诉我了,你的名字是刘大山!
None
  • deepseek-r1
================================== Ai Message ==================================<think>
嗯,用户说:“嘿,你好,我是刘大山。”首先,我要理解他的意思。看起来他可能想自我介绍或者有什么特别的需求。...最后,用简体中文回复,让用户感受到亲切和支持。最后,用简体中文回复,让用户感受到亲切和支持。
</think>你好,刘大山!有什么我可以帮助你的吗?
None
================================== Ai Message ==================================<think>
好的,现在用户问:“我叫什么名字?” 这是一个比较直接的问题。首先,我要理解用户的意图。看起来用户可能是在测试我的功能或者只是想确认自己的身份信息。...最后,我要确保用简体中文回复,并且语气友好、自然。
</think>你好!你的名字是刘大山。有什么我可以帮助你的吗?
None

可以看见 llama3.1deepseek-r1 表现都很好。

总结

我们了解了提示词模板,并通过不同的提示词控制大模型,可以发现不同的提示词会让大模型有迥然不同的表现。

代码

本文涉及的所有代码以及相关资源都已经共享,参见:

  • github
  • gitee

参考:

  • Build a Chatbot

🪐祝好运🪐

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69183.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NeuralCF 模型:神经网络协同过滤模型

实验和完整代码 完整代码实现和jupyter运行&#xff1a;https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main 引言 NeuralCF 模型由新加坡国立大学研究人员于 2017 年提出&#xff0c;其核心思想在于将传统协同过滤方法与深度学习技术相结…

【自动化办公】批量图片PDF自定义指定多个区域识别重命名,批量识别铁路货物运单区域内容改名,基于WPF和飞桨ocr深度学习模型的解决方案

项目背景介绍 铁路货运企业需要对物流单进行长期存档&#xff0c;以便后续查询和审计。不同的物流单可能包含不同的关键信息&#xff0c;通过自定义指定多个区域进行识别重命名&#xff0c;可以使存档的图片文件名具有统一的规范和明确的含义。比如&#xff0c;将包含货物运单…

Qt跨屏窗口的一个Bug及解决方案

如果我们希望一个窗口覆盖用户的整个桌面&#xff0c;此时就要考虑用户有多个屏幕的场景&#xff08;此窗口要横跨多个屏幕&#xff09;&#xff0c;由于每个屏幕的分辨率和缩放比例可能是不同的&#xff0c;Qt底层在为此窗口设置缩放比例&#xff08;DevicePixelRatio&#xf…

LeetCode:63. 不同路径 II

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;63. 不同路径 II 给定一个 m x n 的整数数组 grid。一个机器人初始位于 左上角&#xff08;即 grid[0][0]…

自定义数据集 使用paddlepaddle框架实现逻辑回归

导入必要的库 import numpy as np import paddle import paddle.nn as nn 数据准备&#xff1a; seed1 paddle.seed(seed)# 1.散点输入 定义输入数据 data [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6…

如何利用maven更优雅的打包

最近在客户现场部署项目&#xff0c;有两套环境&#xff0c;无法连接互联网&#xff0c;两套环境之间也是完全隔离&#xff0c;于是问题就来了&#xff0c;每次都要远程到公司电脑改完代码&#xff0c;打包&#xff0c;通过网盘&#xff08;如果没有会员&#xff0c;上传下载慢…

string类OJ练习题

目录 文章目录 前言 一、反转字符串 二、反转字符串 II 三、反转字符串中的单词 III 四、验证一个字符串是否是回文 五、字符串相加&#xff08;大数加法&#xff09; 六、字符串相乘&#xff08;大数乘法&#xff09; 七、把字符串转化为整数&#xff08;atoi&#xff09; 总结…

(一)DeepSeek大模型安装部署-Ollama安装

大模型deepseek安装部署 (一)、安装ollama curl -fsSL https://ollama.com/install.sh | sh sudo systemctl start ollama sudo systemctl enable ollama sudo systemctl status ollama(二)、安装ollama遇到网络问题&#xff0c;请手动下载 ollama-linux-amd64.tgz curl -L …

面对全球化的泼天流量,出海企业如何观测多地域网络质量?

作者&#xff1a;俞嵩、白玙 泼天富贵背后&#xff0c;技术挑战接踵而至 随着全球化进程&#xff0c;出海、全球化成为很多 Toc 产品的必经之路&#xff0c;保障不同地域、不同网络环境的一致的用户体验成为全球化应用的不得不面对的问题。在跨运营商、跨地域的网络环境中&am…

蓝桥杯备考:模拟算法之字符串展开

P1098 [NOIP 2007 提高组] 字符串的展开 - 洛谷 | 计算机科学教育新生态 #include <iostream> #include <cctype> #include <algorithm> using namespace std; int p1,p2,p3; string s,ret; void add(char left,char right) {string tmp;for(char ch left1;…

FPGA学习篇——Verilog学习1

1 数电基础知识&#xff08;后续可能还会继续补充&#xff09; 1.1 逻辑电平 这张图比较重要以及陌生的应该是高阻态Z&#xff0c;他是一个未知值&#xff0c;不一定为高也不一定为低电平&#xff0c;X是只能高电平和低电平中二选一。 1.2 进制 进制有常见的二进制&#xff0…

C++的 I/O 流

本文把复杂的基类和派生类的作用和关系捋出来&#xff0c;具体的接口请参考相关文档 C的 I/O 流相关的类&#xff0c;继承关系如下图所示 https://zh.cppreference.com/w/cpp/io I / O 的概念&#xff1a;内存和外设进行数据交互称为 I / O &#xff0c;例如&#xff1a;把数…

【HarmonyOS之旅】基于ArkTS开发(三) -> 兼容JS的类Web开发(四) -> 常见组件(一)

目录 1 -> List 1.1 -> 创建List组件 1.2 -> 添加滚动条 1.3 -> 添加侧边索引栏 1.4 -> 实现列表折叠和展开 1.5 -> 场景示例 2 -> dialog 2.1 -> 创建Dialog组件 2.2 -> 设置弹窗响应 2.3 -> 场景示例 3 -> form 3.1 -> 创建…

《Python预训练视觉和大语言模型》:从DeepSeek到大模型实战的全栈指南

就是当代AI工程师的日常&#xff1a;* - 砸钱买算力&#xff0c;却卡在分布式训练的“隐形坑”里&#xff1b; - 跟着论文复现模型&#xff0c;结果连1/10的性能都达不到&#xff1b; - 好不容易上线应用&#xff0c;却因伦理问题被用户投诉…… 当所有人都在教你怎么调用…

【Elasticsearch】date range聚合

好的&#xff0c;继续之前的示例&#xff1a; json ] } } } } 4.3 自定义键&#xff08;key&#xff09; 通过为每个范围指定一个唯一的键&#xff08;key&#xff09;&#xff0c;可以在结果中更方便地引用每个范围。这在使用keyed参数将结果以键值对形式返回时尤其有用。 j…

ElasticSearch 学习课程入门(二)

引子 前文已经介绍了ES的增删改查基本操作&#xff0c;接下来&#xff0c;我们学习下高级点的用法。OK&#xff0c;那就让我们开始吧。 一、ES高级操作 1、条件查询 &#xff08;1&#xff09;GET https://127.0.0.1:9200/shopping/_search?qcategory:小米 &#xff08;2&…

6.PPT:魏女士-高新技术企业政策【19】

目录 NO1234​ NO567 ​ NO1234 创建“PPT.pptx”考生文件夹Word素材文档&#xff1a;选中对应颜色的文字→选中对应的样式单击右键按下匹配对应文字&#xff1a;应用所有对应颜色的文字开始→创建新的幻灯片→从大纲&#xff1a;考生文件夹&#xff1a;Word素材重置 开始→版…

【Linux系统】信号:信号保存 / 信号处理、内核态 / 用户态、操作系统运行原理(中断)

理解Linux系统内进程信号的整个流程可分为&#xff1a; 信号产生 信号保存 信号处理 上篇文章重点讲解了 信号的产生&#xff0c;本文会讲解信号的保存和信号处理相关的概念和操作&#xff1a; 两种信号默认处理 1、信号处理之忽略 ::signal(2, SIG_IGN); // ignore: 忽略#…

【算法篇】贪心算法

目录 贪心算法 贪心算法实际应用 一&#xff0c;零钱找回问题 二&#xff0c;活动选择问题 三&#xff0c;分数背包问题 将数组和减半的最小操作次数 最大数 贪心算法 贪心算法&#xff0c;是一种在每一步选择中都采取当前状态下的最优策略&#xff0c;期望得到全局最优…

SSM网上球鞋竞拍系统

&#x1f345;点赞收藏关注 → 添加文档最下方联系方式咨询本源代码、数据库&#x1f345; 本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目希望你能有所收获&#xff0c;少走一些弯路。&#x1f345;关注我不迷路&#x1f345; 项目视频 js…