使用Python和TensorFlow/Keras构建一个简单的CNN模型来识别手写数字

一个简单的图像识别项目代码示例,使用Python和TensorFlow/Keras库来训练一个基本的CNN模型,用于识别MNIST手写数字数据集,并将测试结果输出到HTML。

代码运行效果截图:

具体操作步骤:

1. 安装所需的库

首先,确保你已经安装了所需的Python库:

pip install tensorflow numpy matplotlib pandas jinja2
  • TensorFlow:用于构建和训练深度学习模型。

  • NumPy:用于处理数值数据。

  • Matplotlib:用于可视化图像和训练结果。

  • Pandas:用于整理测试结果。

  • Jinja2:用于生成HTML模板。

2. 导入库

import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import matplotlib.pyplot as plt

3. 加载和预处理数据

我们将使用MNIST数据集,这是一个包含28x28像素手写数字图像的数据集。

# 加载MNIST数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 归一化像素值到0-1之间
x_train, x_test = x_train / 255.0, x_test / 255.0# 将图像数据从28x28调整为28x28x1,以适应CNN输入
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]

4. 构建CNN模型

model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69143.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2021.3.1的android studio版本就很好用

使用最新版的studio有个问题就是gradle版本也比较高,这样就容易出现之前项目不兼容问题,配置gradle可能会出现很多问题比较烦,所以干脆就用老版本的studio

控件【QT】

文章目录 控件QWidgetenabledgeometrysetGeometry qrcwindowOpacityQPixmapfonttoolTipfocusPolicystyleSheetQPushButtonRadio ButtionCheck Box显示类控件QProgressBarcalendarWidget 控件 Qt中已经提供了很多内置的控件了(按钮,文本框,单选按钮,复选按钮,下拉框…

【小鱼闪闪】做一个物联网控制小灯的制作流程简要介绍(图文)

1、注册物联网云平台,这里选用巴法云 2.、新建主题 “ledtest” 3、 使用Arduino或Mixly软件编写单片机程序(需要引用巴法云库文件),程序中订阅“ledtest”主题,用于接收单片机发送来的数据。此处会将连接的温度传感器…

KNN算法:从思想到实现(附代码)

引言 K最近邻算法(K Nearest Neighbors, KNN)是一种简单而有效的机器学习算法,用于分类和回归问题。其核心思想基于“近朱者赤,近墨者黑”,即通过测量不同特征值之间的距离来进行分类或预测数值。本文将详细介绍KNN的…

专业学习|一文了解并实操自适应大邻域搜索(讲解代码)

一、自适应大邻域搜索概念介绍 自适应大邻域搜索(Adaptive Large Neighborhood Search,ALNS)是一种用于解决组合优化问题的元启发式算法。以下是关于它的详细介绍: -自适应大领域搜索的核心思想是:破坏解、修复解、动…

TensorFlow深度学习实战(6)——回归分析详解

TensorFlow深度学习实战(6)——回归分析详解 0. 前言1. 回归分析简介2. 线性回归2.1 简单线性回归2.2 多重线性回归2.3 多元线性回归 3. 构建基于线性回归的神经网络3.1 使用 TensorFlow 进行简单线性回归3.2 使用 TensorFlow 进行多元线性回归和多重线性…

2024年12月 Scratch 图形化(二级)真题解析 中国电子学会全国青少年软件编程等级考试

202412 Scratch 图形化(二级)真题解析 中国电子学会全国青少年软件编程等级考试 一、单选题(共25题,共50分) 第 1 题 小猫初始位置和方向如下图所示,下面哪个选项能让小猫吃到老鼠?( ) A. B. …

Java 面试合集(2024版)

种自己的花,爱自己的宇宙 目录 第一章-Java基础篇 1、你是怎样理解OOP面向对象??? 难度系数:? 2、重载与重写区别??? 难度系数:? 3、接口与抽象类的区别??? 难度系数:? 4、深拷贝与浅拷贝的理解??? 难度系数&…

Math Reference Notes: 符号函数

1. 符号函数的定义 符号函数(Sign Function) sgn ( x ) \text{sgn}(x) sgn(x) 是一个将实数 ( x ) 映射为其 符号值(即正数、负数或零)的函数。 它的定义如下: sgn ( x ) { 1 如果 x > 0 0 如果 x 0 − 1 如…

一文了解边缘计算

什么是边缘计算? 我们可以通过一个最简单的例子来理解它,它就像一个司令员,身在离炮火最近的前线,汇集现场所有的实时信息,经过分析并做出决策,及时果断而不拖延。 1.什么是边缘计算? 边缘计算…

108,【8】 buuctf web [网鼎杯 2020 青龙组]AreUSerialz

进入靶场 <?php // 包含 flag.php 文件&#xff0c;通常这个文件可能包含敏感信息&#xff0c;如 flag include("flag.php");// 高亮显示当前文件的源代码&#xff0c;方便查看代码结构和逻辑 highlight_file(__FILE__);// 定义一个名为 FileHandler 的类&#x…

《redis哨兵机制》

【redis哨兵机制导读】上一节介绍了redis主从同步的机制&#xff0c;但大家有没有想过一种场景&#xff0c;比如&#xff1a;主库突然挂了&#xff0c;那么按照读写分离的设计思想&#xff0c;此时redis集群只有从库才能提供读服务&#xff0c;那么写服务该如何提供&#xff0c…

【赵渝强老师】Spark RDD的依赖关系和任务阶段

Spark RDD彼此之间会存在一定的依赖关系。依赖关系有两种不同的类型&#xff1a;窄依赖和宽依赖。 窄依赖&#xff1a;如果父RDD的每一个分区最多只被一个子RDD的分区使用&#xff0c;这样的依赖关系就是窄依赖&#xff1b;宽依赖&#xff1a;如果父RDD的每一个分区被多个子RD…

开源数据分析工具 RapidMiner

RapidMiner是一款功能强大且广泛应用的数据分析工具&#xff0c;其核心功能和特点使其成为数据科学家、商业分析师和预测建模人员的首选工具。以下是对RapidMiner的深度介绍&#xff1a; 1. 概述 RapidMiner是一款开源且全面的端到端数据科学平台&#xff0c;支持从数据准备、…

蓝桥杯备考:二维前缀和算法模板题(二维前缀和详解)

【模板】二维前缀和 这道题如果我们暴力求解的话&#xff0c;时间复杂度就是q次查询里套两层循环最差的时候要遍历整个矩阵也就是O&#xff08;q*n*m) 由题目就是10的11次方&#xff0c;超时 二维前缀和求和的公式&#xff08;创建需要用到&#xff09;f[i][j]就是从&#xf…

3-track_hacker/2018网鼎杯

3-track_hacker 打开附件 使用Wireshark打开。过滤器过滤http,看里面有没有flag.txt 发现有 得到&#xff1a;eJxLy0lMrw6NTzPMS4n3TVWsBQAz4wXi base64解密 import base64 import zlibc eJxLy0lMrw6NTzPMS4n3TVWsBQAz4wXi decoded base64.b64decode(c) result zlib.deco…

第二十章 存储函数

目录 一、概述 二、语法 三、示例 一、概述 前面章节中&#xff0c;我们详细讲解了MySQL中的存储过程&#xff0c;掌握了存储过程之后&#xff0c;学习存储函数则肥仓简单&#xff0c;存储函数其实是一种特殊的存储过程&#xff0c;也就是有返回值的存储过程。存储函数的参数…

Linux:文件系统(软硬链接)

目录 inode ext2文件系统 Block Group 超级块&#xff08;Super Block&#xff09; GDT&#xff08;Group Descriptor Table&#xff09; 块位图&#xff08;Block Bitmap&#xff09; inode位图&#xff08;Inode Bitmap&#xff09; i节点表&#xff08;inode Tabl…

java求职学习day27

数据库连接池 &DBUtils 1.数据库连接池 1.1 连接池介绍 1) 什么是连接池 实际开发中 “ 获得连接 ” 或 “ 释放资源 ” 是非常消耗系统资源的两个过程&#xff0c;为了解决此类性能问题&#xff0c;通常情况我们 采用连接池技术&#xff0c;来共享连接 Connection 。…

机器学习--2.多元线性回归

多元线性回归 1、基本概念 1.1、连续值 1.2、离散值 1.3、简单线性回归 1.4、最优解 1.5、多元线性回归 2、正规方程 2.1、最小二乘法 2.2、多元一次方程举例 2.3、矩阵转置公式与求导公式 2.4、推导正规方程0的解 2.5、凸函数判定 成年人最大的自律就是&#xff1a…