专业学习|一文了解并实操自适应大邻域搜索(讲解代码)

一、自适应大邻域搜索概念介绍

        自适应大邻域搜索(Adaptive Large Neighborhood SearchALNS)是一种用于解决组合优化问题的元启发式算法。以下是关于它的详细介绍:

-自适应大领域搜索的核心思想是:破坏解修复解动态调整权重并选择(自适应)

(一) 基本原理

(1)大邻域搜索(LNS)基础

    传统的局部搜索算法通常在当前解的小邻域内进行搜索,容易陷入局部最优解。大邻域搜索则通过破坏(destroy)当前解的一部分,生成一个更大的邻域,然后再通过修复(repair)操作得到新的可行解,从而有可能跳出局部最优。

    例如,在车辆路径规划问题中,破坏操作可以是移除一些客户节点,修复操作则是将这些移除的节点重新插入到路径中。

与同类算法相比:在邻域搜索算法中,有的算法可以只使用一种邻域,如模拟退火算法,因此它仅仅搜索了解空间的一小部分,找到全局最优的概率较小,它的优势之一是可以避免陷入局部最优;

邻域搜索算法以一个初始解 x xx 为输入,在 x xx 的邻域进行搜索,以寻找可能存在的更优解,每次找到一个更优解,就用它替换当前解,直到达到局部最优解(找不到任何更优解)。该算法被称为最佳改进算法,因为它总是选择邻域中的最佳解。

而有的算法可以使用多种算子,如变邻域搜索算法(VNS),它通过在当前解的多个邻域中寻找更满意的解,能够大大提高算法在解空间的搜索范围,但是它在使用算子时盲目地将每种算子形成的邻域结构都搜索一遍,缺少了一些启发式信息的指导;

自适应大邻域搜索算法就弥补了这种不足,这种算法根据算子的历史表现与使用次数选择下一次迭代使用的算子,通过算子间的相互竞争来生成当前解的邻域结构,而在这种结构中有很大概率能够找到更好的解;

销毁方法通常包含随机元素,因此每次调用该方法时都会销毁解决方案的不同部分。然后,解 x xx 的邻域 N ( x ) N(x)N(x) 被定义为通过首先应用破坏方法然后应用修复方法可以达到的解集

(2)自适应机制

    ALNSLNS的基础上引入了自适应机制。它会根据不同的破坏和修复操作在搜索过程中的表现,动态地调整这些操作被选择的概率。表现好的操作在后续搜索中被选择的概率会增加,反之则减少。

    具体来说,算法会为每个破坏和修复操作维护一个分数,根据该分数更新操作的权重,进而影响操作被选择的概率。

(二) 主要步骤

(1) 初始化

    生成一个初始解。这个初始解可以是通过某种启发式方法得到的,也可以是随机生成的。

    初始化各种破坏和修复操作的权重,通常初始权重可以设置为相等。

(2) 迭代搜索

        选择操作:根据当前操作的权重,使用某种选择策略(如轮盘赌选择)选择一个破坏操作和一个修复操作。

        破坏阶段:使用选择的破坏操作对当前解进行破坏,得到一个部分解。

        修复阶段:使用选择的修复操作对部分解进行修复,得到一个新的可行解。

       接受准则:根据一定的接受准则(如模拟退火中的Metropolis准则)决定是否接受这个新解。如果接受,则将新解作为当前解;否则,保持当前解不变。

        更新操作分数和权重:根据新解的质量,更新所使用的破坏和修复操作的分数,然后根据分数更新操作的权重。

(3) 终止条件

       当满足一定的终止条件(如达到最大迭代次数、运行时间超过限制等)时,算法停止,输出当前找到的最优解。

1. 生成初始解,当前解X0 = 初始解,最优解X1 = X02. 重复以下步骤进行迭代直到停止准则2.1 根据算子权重选择破坏与修复算子,并更新算子使用次数2.2 破坏算子和修复算子依次对当前解操作得到新解X22.3 更新当前解 - 如f(X2) < f(X0),则X0 = X2- 如f(X2) > f(X0),则以一定的概率接受该解作为当前解2.4 更新最优解 - 如f(X2) < f(X1),则X1 = X22.5 更新算子的分数2.6 更新算子的权重2.7 重置当前解3. 返回最优解X1

(4)关于破坏算子选择以及修复算子选择说明

(5)关于动态调整权重并选择(自适应过程)的说明

(三)算法评析

 (1)优点

全局搜索能力强:通过大邻域搜索,能够跳出局部最优,有更大的机会找到全局最优解。

自适应特性:能够根据搜索过程中的反馈动态调整操作的选择概率,提高搜索效率。

灵活性高:可以应用于各种组合优化问题,只需要根据具体问题设计合适的破坏和修复操作。

(2) 缺点

参数调整复杂:算法中有多个参数需要调整,如初始权重、分数更新规则等,参数设置不当可能会影响算法的性能。

计算复杂度高:由于需要进行多次破坏和修复操作,计算量较大,对于大规模问题可能需要较长的运行时间。

(3) 应用领域

ALNS在许多组合优化问题中都有应用,例如:

车辆路径规划问题(VRP):包括带时间窗的VRP、多车辆VRP等。

调度问题:如作业车间调度、项目调度等。

资源分配问题:如护士排班、课程排课等。

二、算法实例

(一)ALNS算法实现34个城市的TSP问题

#以下是python实现的代码。 其中,destroy算子有3个:随机筛选N个城市、删除距离最大的N个城市和随机删#除连续的N个城市;repair算子有2个:随机插入和贪心插入,不过考虑到随机插入的效果大概率比较差,所以#代码中实际只使用了贪心插入。import copy
import time
import random
import numpy as np
import pandas as pd
import os
import math
import foliumclass ALNSSearch():# 计算TSP总距离# 计算TSP总距离@staticmethoddef dis_cal(path, dist_mat):distance = 0for i in range(len(path) - 1):distance += dist_mat[path[i]][path[i + 1]]distance += dist_mat[path[-1]][path[0]]return distance# 随机删除N个城市@staticmethoddef random_destroy(x, destroy_city_cnt):new_x = copy.deepcopy(x)removed_cities = []# 随机选择N个城市,并删除removed_index = random.sample(range(0, len(x)), destroy_city_cnt)for i in removed_index:removed_cities.append(new_x[i])x.remove(new_x[i])return removed_cities# 删除距离最大的N个城市@staticmethoddef max_n_destroy(x, destroy_city_cnt):new_x = copy.deepcopy(x)removed_cities = []# 计算顺序距离并排序dis = []for i in range(len(new_x) - 1):dis.append(dist_mat[new_x[i]][new_x[i + 1]])dis.append(dist_mat[new_x[-1]][new_x[0]])sorted_index = np.argsort(np.array(dis))# 删除最大的N个城市for i in range(destroy_city_cnt):removed_cities.append(new_x[sorted_index[-1 - i]])x.remove(new_x[sorted_index[-1 - i]])return removed_cities# 随机删除连续的N个城市@staticmethoddef continue_n_destroy(x, destroy_city_cnt):new_x = copy.deepcopy(x)removed_cities = []# 随机选择N个城市,并删除removed_index = random.sample(range(0, len(x) - destroy_city_cnt), 1)[0]for i in range(removed_index + destroy_city_cnt, removed_index, -1):removed_cities.append(new_x[i])x.remove(new_x[i])return removed_cities# destroy操作def destroy(self, flag, x, destroy_city_cnt):# 三个destroy算子,第一个是随机删除N个城市,第二个是删除距离最大的N个城市,第三个是随机删除连续的N个城市removed_cities = []if flag == 0:# 随机删除N个城市removed_cities = self.random_destroy(x, destroy_city_cnt)elif flag == 1:# 删除距离最大的N个城市removed_cities = self.max_n_destroy(x, destroy_city_cnt)elif flag == 2:# 随机删除连续的N个城市removed_cities = self.continue_n_destroy(x, destroy_city_cnt)return removed_cities# 随机插入def random_insert(x, removed_cities):insert_index = random.sample(range(0, len(x)), len(removed_cities))for i in range(len(insert_index)):x.insert(insert_index[i], removed_cities[i])# 贪心插入def greedy_insert(self, x, removed_cities):dis = float('inf')insert_index = -1for i in range(len(removed_cities)):# 寻找插入后的最小总距离for j in range(len(x) + 1):new_x = copy.deepcopy(x)new_x.insert(j, removed_cities[i])if self.dis_cal(new_x, dist_mat) < dis:dis = self.dis_cal(new_x, dist_mat)insert_index = j# 最小位置处插入x.insert(insert_index, removed_cities[i])dis = float('inf')# repair操作def repair(self, flag, x, removed_cities):# 两个repair算子,第一个是随机插入,第二个贪心插入if flag == 0:self.random_insert(x, removed_cities)elif flag == 1:self.greedy_insert(x, removed_cities)# 选择destroy算子def select_and_destroy(self, destroy_w, x, destroy_city_cnt):# 轮盘赌逻辑选择算子prob = destroy_w / np.array(destroy_w).sum()seq = [i for i in range(len(destroy_w))]destroy_operator = np.random.choice(seq, size=1, p=prob)[0]# destroy操作removed_cities = self.destroy(destroy_operator, x, destroy_city_cnt)return removed_cities, destroy_operator# 选择repair算子def select_and_repair(self, repair_w, x, removed_cities):# # 轮盘赌逻辑选择算子prob = repair_w / np.array(repair_w).sum()seq = [i for i in range(len(repair_w))]repair_operator = np.random.choice(seq, size=1, p=prob)[0]# repair操作:此处设定repair_operator=1,即只使用贪心策略self.repair(1, x, removed_cities)return repair_operator# ALNS主程序def calc_by_alns(self, dist_mat):# 模拟退火温度T = 100# 降温速度a = 0.97# destroy的城市数量destroy_city_cnt = int(len(dist_mat) * 0.1)# destroy算子的初始权重destroy_w = [1, 1, 1]# repair算子的初始权重repair_w = [1, 1]# destroy算子的使用次数destroy_cnt = [0, 0, 0]# repair算子的使用次数repair_cnt = [0, 0]# destroy算子的初始得分destroy_score = [1, 1, 1]# repair算子的初始得分repair_score = [1, 1]# destroy和repair的挥发系数lambda_rate = 0.5# 当前解,第一代,贪心策略生成removed_cities = [i for i in range(dist_mat.shape[0])]x = []self.repair(1, x, removed_cities)# 历史最优解,第一代和当前解相同,注意是深拷贝,此后有变化不影响x,也不会因x的变化而被影响history_best_x = copy.deepcopy(x)# 迭代cur_iter = 0max_iter = 100print('cur_iter: {}, best_f: {}, best_x: {}'.format(cur_iter, self.dis_cal(history_best_x, dist_mat),history_best_x))while cur_iter < max_iter:# 生成测试解,即伪代码中的x^ttest_x = copy.deepcopy(x)# destroy算子remove, destroy_operator_index = self.select_and_destroy(destroy_w, test_x, destroy_city_cnt)destroy_cnt[destroy_operator_index] += 1# repair算子repair_operator_index = self.select_and_repair(repair_w, test_x, remove)repair_cnt[repair_operator_index] += 1if self.dis_cal(test_x, dist_mat) <= self.dis_cal(x, dist_mat):# 测试解更优,更新当前解x = copy.deepcopy(test_x)if self.dis_cal(test_x, dist_mat) <= self.dis_cal(history_best_x, dist_mat):# 测试解为历史最优解,更新历史最优解,并设置最高的算子得分history_best_x = copy.deepcopy(test_x)destroy_score[destroy_operator_index] = 1.5repair_score[repair_operator_index] = 1.5else:# 测试解不是历史最优解,但优于当前解,设置第二高的算子得分destroy_score[destroy_operator_index] = 1.2repair_score[repair_operator_index] = 1.2else:if np.random.random() < np.exp((self.dis_cal(x, dist_mat) - self.dis_cal(test_x, dist_mat)) / T):# 当前解优于测试解,但满足模拟退火逻辑,依然更新当前解,设置第三高的算子得分x = copy.deepcopy(test_x)destroy_score[destroy_operator_index] = 0.8repair_score[repair_operator_index] = 0.8else:# 当前解优于测试解,也不满足模拟退火逻辑,不更新当前解,设置最低的算子得分destroy_score[destroy_operator_index] = 0.5repair_score[repair_operator_index] = 0.5# 更新destroy算子的权重destroy_w[destroy_operator_index] = \destroy_w[destroy_operator_index] * lambda_rate + \(1 - lambda_rate) * destroy_score[destroy_operator_index] / destroy_cnt[destroy_operator_index]# 更新repair算子的权重repair_w[repair_operator_index] = \repair_w[repair_operator_index] * lambda_rate + \(1 - lambda_rate) * repair_score[repair_operator_index] / repair_cnt[repair_operator_index]# 降低温度T = a * T# 结束一轮迭代,重置模拟退火初始温度cur_iter += 1print('cur_iter: {}, best_f: {}, best_x: {}'.format(cur_iter, self.dis_cal(history_best_x, dist_mat),history_best_x))# 打印ALNS得到的最优解print(history_best_x)print(self.dis_cal(history_best_x, dist_mat))return history_best_xif __name__ == '__main__':original_cities = [['西宁', 101.74, 36.56],['兰州', 103.73, 36.03],['银川', 106.27, 38.47],['西安', 108.95, 34.27],['郑州', 113.65, 34.76],['济南', 117, 36.65],['石家庄', 114.48, 38.03],['太原', 112.53, 37.87],['呼和浩特', 111.65, 40.82],['北京', 116.407526, 39.90403],['天津', 117.200983, 39.084158],['沈阳', 123.38, 41.8],['长春', 125.35, 43.88],['哈尔滨', 126.63, 45.75],['上海', 121.473701, 31.230416],['杭州', 120.19, 30.26],['南京', 118.78, 32.04],['合肥', 117.27, 31.86],['武汉', 114.31, 30.52],['长沙', 113, 28.21],['南昌', 115.89, 28.68],['福州', 119.3, 26.08],['台北', 121.3, 25.03],['香港', 114.173355, 22.320048],['澳门', 113.54909, 22.198951],['广州', 113.23, 23.16],['海口', 110.35, 20.02],['南宁', 108.33, 22.84],['贵阳', 106.71, 26.57],['重庆', 106.551556, 29.563009],['成都', 104.06, 30.67],['昆明', 102.73, 25.04],['拉萨', 91.11, 29.97],['乌鲁木齐', 87.68, 43.77]]original_cities = pd.DataFrame(original_cities, columns=['城市', '经度', '纬度'])D = original_cities[['经度', '纬度']].values * math.pi / 180city_cnt = len(original_cities)dist_mat = np.zeros((city_cnt, city_cnt))for i in range(city_cnt):for j in range(city_cnt):if i == j:# 相同城市不允许访问dist_mat[i][j] = 1000000else:# 单位:kmdist_mat[i][j] = 6378.14 * math.acos(math.cos(D[i][1]) * math.cos(D[j][1]) * math.cos(D[i][0] - D[j][0]) +math.sin(D[i][1]) * math.sin(D[j][1]))# ALNS求解TSPtime0 = time.time()alns = ALNSSearch()history_best_x = alns.calc_by_alns(dist_mat)print(city_cnt)print('使用ALNS求解TSP,耗时: {} s'.format(time.time() - time0))
#运行代码后可发现,经过不到4s的计算时间,ALNS便可以得到15662.59的解,和全局最优解15614.84之间的#gap仅约0.3%。

(2) Robust Optimization for the Dual Sourcing Inventory Routing Problem in Disaster Relief

import numpy as np
import math
import re
import csv
import random
import copy
import time
import os
# --------------------------- Global Configuration ---------------------------------------removal_operators_list=['shaw','distance','worst','worst_replenishment_time','random']
insertion_operators_list=['greedy','2_regret','shaw']##################################################################################for root, dirs, files in os.walk('./Test_set'):for set_name in files:print(set_name)time_start = time.time()instance = set_nameproblem = base.generate_problem(instance)records = base.Record(removal_operators_list, insertion_operators_list)solution = base.generate_initial_solution(problem)removal_operators = base.Removal_operators(removal_operators_list)insertion_operators = base.Insertion_operators(insertion_operators_list)solution.obj = base.calculate_objective(solution, problem)current_solution = copy.deepcopy(solution)best_solution = copy.deepcopy(solution)time_end = time.time()time_cost = time_end - time_startrecords.initial_generator_time_cost = time_costtime_start = time.time()iteration_num = 0iteration_counter = 0segment_counter = 0while time_cost <= 3600:if problem.temperature <= 0.01:breakif iteration_counter >= problem.segments_capacity:segment_counter += 1iteration_counter = 0for i in removal_operators_list:records.removal_operator_score_record[i].append(removal_operators.removal_operator_score[i])records.removal_operator_weights_record[i].append(removal_operators.removal_operator_weight[i])records.removal_operator_times_record[i].append(removal_operators.removal_operator_times[i])for i in insertion_operators_list:records.insertion_operator_score_record[i].append(insertion_operators.insertion_operator_score[i])records.insertion_operator_weights_record[i].append(insertion_operators.insertion_operator_weight[i])records.insertion_operator_times_record[i].append(insertion_operators.insertion_operator_times[i])removal_operators.update_weight(removal_operators_list,problem)insertion_operators.update_weight(insertion_operators_list,problem)for i in removal_operators_list:removal_operators.removal_operator_score[i] = 0removal_operators.removal_operator_times[i] = 0for i in insertion_operators_list:insertion_operators.insertion_operator_score[i] = 0insertion_operators.insertion_operator_times[i] = 0best_solution, current_solution = base.do_2opt(best_solution, current_solution, problem)solution = copy.deepcopy(current_solution)selected_removal_operator = removal_operators.select(removal_operators_list)selected_insertion_operator = insertion_operators.select(insertion_operators_list)removal_operators.removal_operator_times[selected_removal_operator] +=1insertion_operators.insertion_operator_times[selected_insertion_operator] +=1sub_time_start = time.time()sub_time_cost = sub_time_start - time_endbase.do_remove(selected_removal_operator, solution, problem)sub_time_end = time.time()sub_time_cost = sub_time_end - sub_time_startsub_time_start = sub_time_endbase.do_insert(selected_insertion_operator, solution, problem)sub_time_end = time.time()sub_time_cost = sub_time_end - sub_time_startsub_time_start = sub_time_endrecords.best_solution_obj_record.append(best_solution.obj)if solution.obj < current_solution.obj:if solution.obj < best_solution.obj:removal_operators.removal_operator_score[selected_removal_operator] += problem.score_factor_1insertion_operators.insertion_operator_score[selected_insertion_operator] += problem.score_factor_1current_solution = copy.deepcopy(solution)best_solution = copy.deepcopy(solution)current_solution = copy.deepcopy(solution)records.best_solution_obj_record[iteration_num] = best_solution.objsegment_counter = 0print('get best solution= ', best_solution.obj)records.best_solution_update_iteration_num.append(iteration_num)else:removal_operators.removal_operator_score[selected_removal_operator] += problem.score_factor_2insertion_operators.insertion_operator_score[selected_insertion_operator] += problem.score_factor_2current_solution = copy.deepcopy(solution)elif random.random() < math.exp(-(solution.obj - current_solution.obj)/problem.temperature):removal_operators.removal_operator_score[selected_removal_operator] += problem.score_factor_3insertion_operators.insertion_operator_score[selected_insertion_operator] += problem.score_factor_3current_solution = copy.deepcopy(solution)iteration_num += 1iteration_counter += 1time_end = time.time()time_cost = time_end - time_startif time_cost >= 1200 and iteration_num <= 3000/3:problem.cooling_rate = (0.01/problem.temperature) ** (1/iteration_num)if time_cost >= 2400 and iteration_num <= 3000/2:problem.cooling_rate = (0.01/problem.temperature) ** (1/(iteration_num/2))problem.temperature = problem.temperature*problem.cooling_rateprint('iteration '+ str(iteration_num)+' finished!')print(problem.instance_name,' has finished!')with open('Data.csv', 'a', newline='', encoding="ANSI") as f_out:csv.writer(f_out, delimiter=',').writerow([set_name, best_solution.obj,time_cost])print(problem.instance_name, ' has finished!')

三、基础知识介绍

(一)轮盘赌是什么?

来源:Evolutionary Computing: 遗传算法_轮盘赌选择(转载) - 柠檬雨 - 博客园

参考引用(它山之石)

「1」https://zhuanlan.zhihu.com/p/353562821

「2」元启发式算法详解:(自适应)大邻域搜索算法((A)LNS)-CSDN博客

「3」https://zhuanlan.zhihu.com/p/102298240

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69133.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TensorFlow深度学习实战(6)——回归分析详解

TensorFlow深度学习实战&#xff08;6&#xff09;——回归分析详解 0. 前言1. 回归分析简介2. 线性回归2.1 简单线性回归2.2 多重线性回归2.3 多元线性回归 3. 构建基于线性回归的神经网络3.1 使用 TensorFlow 进行简单线性回归3.2 使用 TensorFlow 进行多元线性回归和多重线性…

2024年12月 Scratch 图形化(二级)真题解析 中国电子学会全国青少年软件编程等级考试

202412 Scratch 图形化&#xff08;二级&#xff09;真题解析 中国电子学会全国青少年软件编程等级考试 一、单选题(共25题&#xff0c;共50分) 第 1 题 小猫初始位置和方向如下图所示&#xff0c;下面哪个选项能让小猫吃到老鼠&#xff1f;&#xff08; &#xff09; A. B. …

Java 面试合集(2024版)

种自己的花&#xff0c;爱自己的宇宙 目录 第一章-Java基础篇 1、你是怎样理解OOP面向对象??? 难度系数&#xff1a;? 2、重载与重写区别??? 难度系数&#xff1a;? 3、接口与抽象类的区别??? 难度系数&#xff1a;? 4、深拷贝与浅拷贝的理解??? 难度系数&…

Math Reference Notes: 符号函数

1. 符号函数的定义 符号函数&#xff08;Sign Function&#xff09; sgn ( x ) \text{sgn}(x) sgn(x) 是一个将实数 ( x ) 映射为其 符号值&#xff08;即正数、负数或零&#xff09;的函数。 它的定义如下&#xff1a; sgn ( x ) { 1 如果 x > 0 0 如果 x 0 − 1 如…

一文了解边缘计算

什么是边缘计算&#xff1f; 我们可以通过一个最简单的例子来理解它&#xff0c;它就像一个司令员&#xff0c;身在离炮火最近的前线&#xff0c;汇集现场所有的实时信息&#xff0c;经过分析并做出决策&#xff0c;及时果断而不拖延。 1.什么是边缘计算&#xff1f; 边缘计算…

108,【8】 buuctf web [网鼎杯 2020 青龙组]AreUSerialz

进入靶场 <?php // 包含 flag.php 文件&#xff0c;通常这个文件可能包含敏感信息&#xff0c;如 flag include("flag.php");// 高亮显示当前文件的源代码&#xff0c;方便查看代码结构和逻辑 highlight_file(__FILE__);// 定义一个名为 FileHandler 的类&#x…

《redis哨兵机制》

【redis哨兵机制导读】上一节介绍了redis主从同步的机制&#xff0c;但大家有没有想过一种场景&#xff0c;比如&#xff1a;主库突然挂了&#xff0c;那么按照读写分离的设计思想&#xff0c;此时redis集群只有从库才能提供读服务&#xff0c;那么写服务该如何提供&#xff0c…

【赵渝强老师】Spark RDD的依赖关系和任务阶段

Spark RDD彼此之间会存在一定的依赖关系。依赖关系有两种不同的类型&#xff1a;窄依赖和宽依赖。 窄依赖&#xff1a;如果父RDD的每一个分区最多只被一个子RDD的分区使用&#xff0c;这样的依赖关系就是窄依赖&#xff1b;宽依赖&#xff1a;如果父RDD的每一个分区被多个子RD…

开源数据分析工具 RapidMiner

RapidMiner是一款功能强大且广泛应用的数据分析工具&#xff0c;其核心功能和特点使其成为数据科学家、商业分析师和预测建模人员的首选工具。以下是对RapidMiner的深度介绍&#xff1a; 1. 概述 RapidMiner是一款开源且全面的端到端数据科学平台&#xff0c;支持从数据准备、…

蓝桥杯备考:二维前缀和算法模板题(二维前缀和详解)

【模板】二维前缀和 这道题如果我们暴力求解的话&#xff0c;时间复杂度就是q次查询里套两层循环最差的时候要遍历整个矩阵也就是O&#xff08;q*n*m) 由题目就是10的11次方&#xff0c;超时 二维前缀和求和的公式&#xff08;创建需要用到&#xff09;f[i][j]就是从&#xf…

3-track_hacker/2018网鼎杯

3-track_hacker 打开附件 使用Wireshark打开。过滤器过滤http,看里面有没有flag.txt 发现有 得到&#xff1a;eJxLy0lMrw6NTzPMS4n3TVWsBQAz4wXi base64解密 import base64 import zlibc eJxLy0lMrw6NTzPMS4n3TVWsBQAz4wXi decoded base64.b64decode(c) result zlib.deco…

第二十章 存储函数

目录 一、概述 二、语法 三、示例 一、概述 前面章节中&#xff0c;我们详细讲解了MySQL中的存储过程&#xff0c;掌握了存储过程之后&#xff0c;学习存储函数则肥仓简单&#xff0c;存储函数其实是一种特殊的存储过程&#xff0c;也就是有返回值的存储过程。存储函数的参数…

Linux:文件系统(软硬链接)

目录 inode ext2文件系统 Block Group 超级块&#xff08;Super Block&#xff09; GDT&#xff08;Group Descriptor Table&#xff09; 块位图&#xff08;Block Bitmap&#xff09; inode位图&#xff08;Inode Bitmap&#xff09; i节点表&#xff08;inode Tabl…

java求职学习day27

数据库连接池 &DBUtils 1.数据库连接池 1.1 连接池介绍 1) 什么是连接池 实际开发中 “ 获得连接 ” 或 “ 释放资源 ” 是非常消耗系统资源的两个过程&#xff0c;为了解决此类性能问题&#xff0c;通常情况我们 采用连接池技术&#xff0c;来共享连接 Connection 。…

机器学习--2.多元线性回归

多元线性回归 1、基本概念 1.1、连续值 1.2、离散值 1.3、简单线性回归 1.4、最优解 1.5、多元线性回归 2、正规方程 2.1、最小二乘法 2.2、多元一次方程举例 2.3、矩阵转置公式与求导公式 2.4、推导正规方程0的解 2.5、凸函数判定 成年人最大的自律就是&#xff1a…

Docker 部署 ClickHouse 教程

Docker 部署 ClickHouse 教程 背景 ClickHouse 是一个开源的列式数据库管理系统&#xff08;DBMS&#xff09;&#xff0c;主要用于在线分析处理&#xff08;OLAP&#xff09;。它专为大数据的实时分析设计&#xff0c;支持高速的查询性能和高吞吐量。ClickHouse 以其高效的数…

建表注意事项(2):表约束,主键自增,序列[oracle]

没有明确写明数据库时,默认基于oracle 约束的分类 用于确保数据的完整性和一致性。约束可以分为 表级约束 和 列级约束&#xff0c;区别在于定义的位置和作用范围 复合主键约束: 主键约束中有2个或以上的字段 复合主键的列顺序会影响索引的使用&#xff0c;需谨慎设计 添加…

Google C++ Style / 谷歌C++开源风格

文章目录 前言1. 头文件1.1 自给自足的头文件1.2 #define 防护符1.3 导入你的依赖1.4 前向声明1.5 内联函数1.6 #include 的路径及顺序 2. 作用域2.1 命名空间2.2 内部链接2.3 非成员函数、静态成员函数和全局函数2.4 局部变量2.5 静态和全局变量2.6 thread_local 变量 3. 类3.…

【HTML入门】Sublime Text 4与 Phpstorm

文章目录 前言一、环境基础1.Sublime Text 42.Phpstorm(1)安装(2)启动Phpstorm(3)“启动”码 二、HTML1.HTML简介(1)什么是HTML(2)HTML版本及历史(3)HTML基本结构 2.HTML简单语法(1)HTML标签语法(2)HTML常用标签(3)表格(4)特殊字符 总结 前言 在当今的软件开发领域&#xff0c…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.20 傅里叶变换:从时域到频域的算法实现

2.20 傅里叶变换&#xff1a;从时域到频域的算法实现 目录 #mermaid-svg-zrRqIme9IEqP6JJE {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-zrRqIme9IEqP6JJE .error-icon{fill:#552222;}#mermaid-svg-zrRqIme9IEqP…