讯飞智作 AI 配音技术浅析(二):深度学习与神经网络

讯飞智作 AI 配音技术依赖于深度学习与神经网络,特别是 TacotronWaveNet 和 Transformer-TTS 模型。这些模型通过复杂的神经网络架构和数学公式,实现了从文本到自然语音的高效转换。


一、Tacotron 模型

Tacotron 是一种端到端的语音合成模型,能够直接从文本生成语音频谱(Mel-spectrogram),然后通过声码器生成最终的语音信号。其主要优势在于能够捕捉文本与语音之间的复杂关系,生成自然流畅的语音。

1. 模型架构

Tacotron 的架构主要包括以下几个部分:

1.编码器(Encoder)

2.注意力机制(Attention Mechanism)

3.解码器(Decoder)

4.后处理网络(Post-processing Network)

    2. 详细技术解析
    1. 编码器(Encoder)

    功能:将输入的文本序列转换为隐藏表示(hidden representations),捕捉文本的语义和语法信息。

    过程

    • 文本嵌入(Text Embedding):将每个字符或单词转换为向量表示。

      其中,x_{t}​ 是第 t 个字符,\textbf{e}_{t} 是其对应的嵌入向量。

    • 卷积层(Convolutional Layers):使用多层一维卷积神经网络(1D CNN)来捕捉文本的局部特征。

    • 双向长短期记忆网络(Bi-directional LSTM):捕捉文本的上下文信息。

      其中,\textbf{h}_{t}​ 是第 t 个时间步的隐藏状态。

    输出:编码器输出一个隐藏状态序列 \textbf{H}=\left \{ \textbf{h}_{1},\textbf{h}_{2},...,\textbf{h}_{T} \right \},作为注意力机制的输入。

    2. 注意力机制(Attention Mechanism)

    功能:在解码过程中,选择性地关注输入文本的不同部分,生成相应的语音频谱。

    过程

    • 计算注意力权重

      其中,\textbf{s}_{i-1}​ 是解码器在第 i-1 个时间步的隐藏状态,\textrm{score} 是评分函数(如点积、拼接等)。

    • 计算上下文向量

    输出:上下文向量 \textbf{c}_{i},用于指导解码器生成语音频谱。

    3. 解码器(Decoder)

    功能:根据上下文向量和之前的语音频谱,生成当前时间步的语音频谱。

    过程

    • LSTM 层

      其中,\textbf{y}_{i-1}​ 是之前生成的语音频谱。

    • 全连接层

      生成当前时间步的语音频谱预测。

    输出:语音频谱序列 \textbf{Y}=\left \{ \textbf{y}_{1},\textbf{y}_{2},...,\textbf{y}_{N} \right \}

    4. 后处理网络(Post-processing Network)

    功能:将预测的语音频谱转换为最终的语音信号。

    过程

    • 使用声码器(Vocoder):Tacotron 通常使用 Griffin-Lim 算法作为声码器,将梅尔频谱转换为语音波形。

    输出:最终的语音波形 \textbf{w}

    3. 关键技术公式总结

    二、WaveNet 模型

    WaveNet 是一种基于卷积神经网络的声码器,能够生成高保真度的语音波形。其主要优势在于能够捕捉语音中的细微变化,生成非常自然的语音。

    1. 模型架构

    WaveNet 的架构主要包括以下几个部分:

    1.因果卷积层(Causal Convolutional Layers)

    2.扩张卷积层(Dilated Convolutional Layers)

    3.门控激活单元(Gated Activation Units)

    4.残差连接(Residual Connections)

    5.跳跃连接(Skip Connections)

    6.输出层(Output Layer)

      2. 详细技术解析
      1. 因果卷积层(Causal Convolutional Layers)

      功能:确保模型在生成当前样本时,只依赖于之前的样本。

      过程

      • 使用一维卷积神经网络(1D CNN),并通过填充(padding)实现因果性。
      2. 扩张卷积层(Dilated Convolutional Layers)

      功能:增加感受野(receptive field),捕捉更长时间的依赖关系。

      过程

      • 在卷积层中引入扩张因子(dilation factor),使得卷积操作跳过若干个样本。

        其中,d 是扩张因子,\textbf{W}^{\left ( l \right )} 是卷积核。

      3. 门控激活单元(Gated Activation Units)

      功能:引入非线性,增强模型的表达能力。

      过程

      • 使用门控机制,将卷积输出分为两部分:

        其中,\ast 表示卷积操作,\odot 表示逐元素相乘,\sigma 是 sigmoid 函数。

      4. 残差连接(Residual Connections)

      功能:缓解梯度消失问题,促进梯度流动。

      过程

      • 将卷积层的输入与输出相加:

      5. 跳跃连接(Skip Connections)

      功能:将底层信息直接传递到高层,增强模型的表达能力。

      过程

      • 将每一层的输出通过跳跃连接传递到输出层:

      6. 输出层(Output Layer)

      功能:将模型输出转换为最终的语音波形。

      过程

      • 使用全连接层,将跳跃连接的结果映射到语音波形的概率分布:

      3. 关键技术公式总结

      三、Transformer-TTS 模型

      Transformer-TTS 模型基于 Transformer 架构,利用自注意力机制(Self-Attention)捕捉文本与语音之间的长距离依赖关系,生成更加自然的语音。

      1. 模型架构

      Transformer-TTS 的架构主要包括以下几个部分:

      1.编码器(Encoder)

      2.解码器(Decoder)

      3.位置编码(Positional Encoding)

      4.多头自注意力机制(Multi-head Self-Attention)

      5.前馈神经网络(Feed-Forward Neural Network)

      6.输出层(Output Layer)

        2. 详细技术解析
        1. 位置编码(Positional Encoding)

        功能:为序列中的每个位置添加位置信息,使模型能够感知序列的顺序。

        过程

        • 使用正弦和余弦函数生成位置编码:

          其中,pos 是位置,i 是维度索引,d_{\textrm{model}} 是模型的维度。

        2. 多头自注意力机制(Multi-head Self-Attention)

        功能:捕捉序列中不同位置之间的依赖关系。

        过程

        • 将输入序列分割成多个头(heads),分别进行自注意力计算:

          其中,Q,K,V 分别是查询、键和值矩阵,\textbf{W}_{i}^{Q},\textbf{W}_{i}^{K},\textbf{W}_{i}^{V}​ 是对应的权重矩阵,\textbf{W}^{O} 是输出权重矩阵。

        • 注意力计算

        3. 前馈神经网络(Feed-Forward Neural Network)

        功能:为每个位置提供非线性变换。

        过程

        • 使用两层全连接层:

        4. 编码器和解码器
        • 编码器:由多层多头自注意力机制和前馈神经网络组成。
        • 解码器:除了多头自注意力机制和前馈神经网络外,还包含编码器-解码器注意力机制。
        5. 输出层

        功能:将解码器输出转换为语音频谱。

        过程

        • 使用线性层将解码器输出映射到语音频谱:

        3. 关键技术公式总结

        本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/68617.shtml

        如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

        相关文章

        JavaScript 进阶(下)

        原型 what 首先,构造函数通过原型分配的函数是所有对象所 共享的。 然后,JavaScript 规定,每一个构造函数都有一个 prototype 属性,指向另一个对象,所以我们也称为原型对象 这个对象可以挂载函数,对象实…

        Effective Objective-C 2.0 读书笔记—— 消息转发

        Effective Objective-C 2.0 读书笔记—— 消息转发 文章目录 Effective Objective-C 2.0 读书笔记—— 消息转发前言消息转发机制概述动态方法解析处理dynamic的属性用于懒加载 消息转发快速消息转发完整消息转发 总结 前言 在前面我学习了关联对象和objc_msgSend的相关内容&a…

        Hive:struct数据类型,内置函数(日期,字符串,类型转换,数学)

        struct STRUCT(结构体)是一种复合数据类型,它允许你将多个字段组合成一个单一的值, 常用于处理嵌套数据,例如当你需要在一个表中存储有关另一个实体的信息时。你可以使用 STRUCT 函数来创建一个结构体。STRUCT 函数接受多个参数&…

        嵌入式知识点总结 Linux驱动 (二)-uboot bootloader

        针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.什么是bootloader? 2.Bootloader的两个阶段 3.uboot启动过程中做了哪些事? 4.uboot和内核kernel如何完成参数传递? 5.为什么要给内核传递…

        Unbutu虚拟机+eclipse+CDT编译调试环境搭建

        问题1: 安装CDT,直接Help->eclipse Market space-> 搜cdt , install,等待重启即可. 问题2:C变量不识别vector ’could not be resolved 这是库的头文件没加好,右键Properties->C Build->Enviroment,增加…

        碳化硅MOSFET相对IGBT和超结MOSFET出现价格倒挂预示着什么

        碳化硅(SiC)MOSFET相对于IGBT和超结MOSFET出现价格倒挂(即SiC MOSFET单价低于传统硅基器件),这一现象反映了化合物半导体产业的深刻变革,并预示着技术、市场和产业链格局的多重演变。倾佳电子杨茜从技术突破…

        openRv1126 AI算法部署实战之——TensorFlow TFLite Pytorch ONNX等模型转换实战

        Conda简介 查看当前系统的环境列表 conda env list base为基础环境 py3.6-rknn-1.7.3为模型转换环境,rknn-toolkit版本V1.7.3,python版本3.6 py3.6-tensorflow-2.5.0为tensorflow模型训练环境,tensorflow版本2.5.0,python版本…

        LabVIEW无线齿轮监测系统

        本案例介绍了基于LabVIEW的无线齿轮监测系统设计。该系统利用LabVIEW编程语言和改进的天牛须算法优化支持向量机,实现了无线齿轮故障监测。通过LabVIEW软件和相关硬件,可以实现对齿轮箱振动信号的采集、传输和故障识别,集远程采集、数据库存储…

        SpringBoot+Vue的理解(含axios/ajax)-前后端交互前端篇

        文章目录 引言SpringBootThymeleafVueSpringBootSpringBootVue(前端)axios/ajaxVue作用响应式动态绑定单页面应用SPA前端路由 前端路由URL和后端API URL的区别前端路由的数据从哪里来的 Vue和只用三件套axios区别 关于地址栏url和axios请求不一致VueJSPS…

        jQuery小游戏(一)

        jQuery小游戏(一) 嘻嘻,今天我们来写个jquery小游戏吧 首先,我们准备一下写小游戏需要准备的佩饰,如果:图片、音乐、搞怪的小表情 这里我准备了一些游戏中需要涉及到的图片 游戏中使用到的方法 eval() 函…

        H3CNE-28-VRRP

        虚拟网关冗余协议,Virtual Router Redundancy Protocotol 三层网关冗余技术对用户网关做冗余 VRRP配置示例 接口IP配置,略。 R1: int g0/0vrrp vrid 1 virtual 192.168.1.254vrrp vrid 1 priority 105 # 1-254,越大越优先R2: …

        私有包上传maven私有仓库nexus-2.9.2

        一、上传 二、获取相应文件 三、最后修改自己的pom文件

        Alfresco Content Services dockerCompose自动化部署详尽操作

        Alfresco Content Services docker社区部署文档 Alfresco Content Services简介 官方说明书 https://support.hyland.com/r/Alfresco/Alfresco-Content-Services-Community-Edition/23.4/Alfresco-Content-Services-Community-Edition/Using/Content/Folder-rules/Defining-…

        麒麟操作系统服务架构保姆级教程(十四)iptables防火墙四表五链和防火墙应用案例

        如果你想拥有你从未拥有过的东西,那么你必须去做你从未做过的事情 防火墙在运维工作中有着不可或缺的重要性。首先,它是保障网络安全的关键防线,通过设置访问控制规则,可精准过滤非法网络流量,有效阻挡外部黑客攻击、恶…

        Midjourney基础-常用修饰词+权重的用法大全

        用好修饰词很关键 Midjourney要用除了掌握好提示词的写法,按照上一篇《做Midjourney最好图文教程-提示词公式以及高级参数讲解》画面主体 场景氛围 主体行为 构图方式 艺术风格 图像质量。 要画出有质感的内容我们必须要掌握好“修饰词”,这些修饰…

        钉钉群机器人设置——python版本

        钉钉群机器人设置——python版本 应用场景钉钉界面操作程序开发效果展示 应用场景 由于工作需要,很多项目执行程序后出现报错信息无法第一时间收到,因此实时预警对于监控程序还是有必要。(仅个人观点) 参考文档及博客&#xff1a…

        babylon.js-3:了解STL网格模型

        网格模型上色 本篇文章主要介绍如何在 BabylonJS 中实现STL网格模型上色。 文章目录 网格模型上色运用场景概要延申正文加载器库的支持认识 OBJ 和 STL 文件GUI 色板选择器网格模型异步加载加载动画网格模型上色官方即将弃用 ImportMesh 而推荐使用 ImportMeshAsync 说明OBJ …

        大数据治理实战:架构、方法与最佳实践

        📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 1. 引言 大数据治理是确保数据质量、合规性和安全性的重要手段,尤其在数据驱动决策和人工智能应用日益普及的背景下&…

        【时时三省】(C语言基础)文件的随机读写

        山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 fseek 根据文件指针的位置和偏移量来定位文件指针 示例: 这个输出的就是ade seek_cur的意思是从当前偏移量 2就是从a往后偏移两个就是d 偏移量 SEEK_CUR…

        yolov5错误更改与相关参数详解(train.py)

        1.错误更改 main中相关参数 if __name__ __main__:parser argparse.ArgumentParser()parser.add_argument(--weights, typestr, default, helpinitial weights path)parser.add_argument(--cfg, typestr, defaultmodels/yolov5s.yaml, helpmodel.yaml path)parser.add_arg…