道格拉斯-普克算法(DP)轮廓点精简(Python)

1、介绍

     道格拉斯-普克算法由David H. Douglas和Thomas K. Peucker于1973年提出,主要用于简化曲线或折线。而实际中,激光点云的边缘点非常粗糙,如果直接将点进行连接,锯齿问题严重。经过DP算法处理后,数据显示会比较光滑,符合认知。

2、原理介绍

      对每一条曲线的首末点虚连一条直线,求所有点与直线的距离,并找出最大距离值dmax,用dmax与限差D相比。若dmax<D,这条曲线上的中间点全部舍去;若dmax ≥D,保留dmax对应的坐标点,并以该点为界,把曲线分为两部分,对这两部分重复使用该方法。

算法的详细步骤如下:

     (1) 在曲线首尾两点间虚连一条直线,求出其余各点到该直线的距离,如图(1)。

    (2) 选其最大者与阈值相比较,若大于阈值,则离该直线距离最大的点保留,否则将直线两端点间各点全部舍去,如图(2),第4点保留。

    (3) 依据所保留的点,将已知曲线分成两部分处理,重复第1、2步操作,迭代操作,即仍选距离最大者与阈值比较,依次取舍,直到无点可舍去,最后得到满足给定精度限差的曲线点坐标,如图(3)、   (4)依次保留第6点、第7点,舍去其他点,即完成线的化简。

3、算法测试

3.1 源代码与测试数据说明

       使用python语言,在pycharm平台上按照上述原理对其实现,源代码下载链接:https://download.csdn.net/download/qq_32867925/90283351

包括源代码与三块测试数据。

3.2 使用说明

     首先说明的是,提取的边缘点必须要有序结构,即将点依次连接起来,是一个闭合的结构,如下图所示。对于无序轮廓点,本程序不适合。若建构简单点云,可参考之前博客点云轮廓点排序——旋转角法(python pycharm)_不规则点云排序-CSDN博客,对轮廓点进行排序。

使用时,需要修改( filepath = "D:\\长方形.txt")这一块路径,修改成自己电脑上存储路径即可。

# 生成示例点云数据
def generate_example_points():boundpts = []filepath = "D:\\长方形.txt"with open(filepath, 'r') as pointsFile:for line in pointsFile:x, y, z, r, g, b = map(float, line.split())if r == 255 and g == 0 and b == 0:boundpts.append([x, y])boundpts = np.array(boundpts)return boundpts

这一块为随机生成的100个数据,使用DP算法对其进行精简。

# 生成示例点云数据
def generate_example_points():"""生成一个示例点云"""x = np.linspace(0, 10, 100)y = np.sin(x) + np.random.normal(0, 0.1, size=len(x))  # 添加噪声return np.column_stack((x, y))

3.3 测试一:随机数精简

     如下是随机生成100个数据,使用DP算法精简结果。使用不同距离阈值约束,精简效果不相同。其中绿色多边形为精简后的直线,红色点为关键点。

3.4 测试二:多边形精简

        多边形点进行精简,精简效果理想。其中绿色多边形为精简后的直线,红色点为关键点。

3.5 测试三:规则矩形

        对于规则矩形,精简后为矩形,效果理想。其中绿色多边形为精简后的直线,红色点为关键点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/67645.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习实战入门项目】使用深度学习创建您自己的表情符号

深度学习项目入门——让你更接近数据科学的梦想 表情符号或头像是表示非语言暗示的方式。这些暗示已成为在线聊天、产品评论、品牌情感等的重要组成部分。这也促使数据科学领域越来越多的研究致力于表情驱动的故事讲述。 随着计算机视觉和深度学习的进步&#xff0c;现在可以…

【unity进阶篇】不同Unity版本对应的C# 版本和API 兼容级别(Api Compatibility Level)选择

考虑到每个人基础可能不一样&#xff0c;且并不是所有人都有同时做2D、3D开发的需求&#xff0c;所以我把 【零基础入门unity游戏开发】 分为成了C#篇、unity通用篇、unity3D篇、unity2D篇。 【C#篇】&#xff1a;主要讲解C#的基础语法&#xff0c;包括变量、数据类型、运算符、…

线段树优化dp,abc389F - Rated Range

目录 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 二、解题报告 1、思路分析 2、复杂度 3、代码详解 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 F - Rated Range 二、解题报告 1、思路分析 考虑定义 f(i, j) 为 初始分…

MySQL 主从复制原理及其工作过程的配置

一、MySQL主从复制原理 MySQL 主从同步是一种数据库复制技术&#xff0c;它通过将主服务器上的数据更改复制到一个或多个从服务器&#xff0c;实现数据的自动同步。 主从同步的核心原理是将主服务器上的二进制日志复制到从服务器&#xff0c;并在从服务器上执行这些日志中的操作…

Linux——线程条件变量(同步)

Linux——多线程的控制-CSDN博客 文章目录 目录 文章目录 前言 一、条件变量是什么&#xff1f; 1、死锁的必要条件 1. 互斥条件&#xff08;Mutual Exclusion&#xff09; 2. 请求和保持条件&#xff08;Hold and Wait&#xff09; 3. 不可剥夺条件&#xff08;No Preemption&…

【Android】蓝牙电话HFP连接源码分析

一、概述 在Android系统中&#xff0c;HF&#xff08;Hands-Free Profile&#xff09;客户端与AG&#xff08;Audio Gateway&#xff09;端之间的HFP&#xff08;Hands-Free Profile&#xff09;连接是蓝牙音频通信的重要组成部分。这一过程涉及多个层次和组件的协同工作&…

【机器学习实战入门】使用Pandas和OpenCV进行颜色检测

Python 颜色检测项目 今天的项目将非常有趣和令人兴奋。我们将与颜色打交道&#xff0c;并在项目过程中学习许多概念。颜色检测对于识别物体来说是必要的&#xff0c;它也被用作各种图像编辑和绘图应用的工具。 什么是颜色检测&#xff1f; 颜色检测是检测任何颜色名称的过程…

动手学大数据-3社区开源实践

目录 数据库概览&#xff1a; MaxComput&#xff1a; HAWQ&#xff1a; Hologres&#xff1a; TiDB&#xff1a; Spark&#xff1a; ClickHouse&#xff1a; Apache Calcite 概览 Calcite RBO HepPlanner 优化规则&#xff08;Rule&#xff09; 内置有100优化规则 …

多平台下Informatica在医疗数据抽取中的应用

一、引言 1.医疗数据抽取与 Informatica 概述 1.1 医疗数据的特点与来源 1.1.1 数据特点 医疗数据具有显著的多样性特点。从数据类型来看&#xff0c;涵盖了结构化数据&#xff0c;如患者的基本信息、检验检查结果等&#xff0c;这些数据通常以表格形式存储&#xff0c;便于…

HTTP / 2

序言 在之前的文章中我们介绍过了 HTTP/1.1 协议&#xff0c;现在再来认识一下迭代版本 2。了解比起 1.1 版本&#xff0c;后面的版本改进在哪里&#xff0c;特点在哪里&#xff1f;话不多说&#xff0c;开始吧⭐️&#xff01; 一、 HTTP / 1.1 存在的问题 很多时候新的版本的…

BUUCTF_Web(October 2019 Twice SQL injection)

October 2019 Twice SQL injection 知识点&#xff1a; 二次注入&#xff1a; 当用户提交的恶意数据被存入数据库后&#xff0c;应用程序再把它读取出来用于生成新的SQL语句时&#xff0c;如果没有相应的安全措施&#xff0c;是有可能发生SQL注入的&#xff0c;这种注入就叫…

电商项目高级篇08-springCache

电商项目高级篇08-springCache 1、整合springCache2、Cacheable细节设置 1、整合springCache 1、引入依赖 <!--引入springCache--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-cache</artifa…

【tailscale 和 ssh】当服务器建立好节点,但通过客户端无法通过 ssh 连接

背景 当服务器建立好节点&#xff0c;一切显示正常但通过客户端无法通过 vs code 中的 ssh 连接到服务器 问题解决 因为服务器是重装过的&#xff0c;所以忘记在服务器上下载 ssh 了。。。安装完成并启动 SSH 服务后便可正常连接&#xff01; sudo apt update sudo apt in…

python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)边缘检测

OpenCV中边缘检测四种常用算子&#xff1a; &#xff08;1&#xff09;Sobel算子 Sobel算子是一种基于梯度的边缘检测算法。它通过对图像进行卷积操作来计算图像的梯度&#xff0c;并将梯度的大小作为边缘的强度。它使用两个3x3的卷积核&#xff0c;分别用于计…

[实现Rpc] 环境搭建 | JsonCpp | Mudou库 | callBack()

目录 1. 项目介绍 2. 技术选型 3. 开发环境和环境搭建 Ubuntu-22.04环境搭建 1. 安装 wget&#xff08;一般情况下默认会自带&#xff09; 2. 更换国内软件源 ① 备份原始 /etc/apt/sources.list 文件 ② 编辑软件源文件 ③ 更新软件包列表 3. 安装常用工具 3.1 安装…

Golang Gin系列-1:Gin 框架总体概述

本文介绍了Gin框架&#xff0c;探索了它的关键特性&#xff0c;并建立了简单入门的应用程序。在这系列教程里&#xff0c;我们会探索Gin的主要特性&#xff0c;如路由、中间件、数据库集成等&#xff0c;最终能使用Gin框架构建健壮的web应用程序。 总体概述 Gin是Go编程语言的…

游戏引擎学习第81天

仓库:https://gitee.com/mrxiao_com/2d_game_2 或许我们应该尝试在地面上添加一些绘图 在这段时间的工作中&#xff0c;讨论了如何改进地面渲染的问题。虽然之前并没有专注于渲染部分&#xff0c;因为当时主要的工作重心不在这里&#xff0c;但在实现过程中&#xff0c;发现地…

IO多路复用详解-selectpollepoll

目录 1.IO多路复用概念 2.系统调用函数 2.1select 2.1.1select函数细节 2.2基于select实现并发处理 2.2.1处理流程 2.2.2服务端通信代码 2.2.3客户端通信代码 2.3基于poll函数实现并发处理 2.3.1select与poll函数区别 2.3.2poll函数 2.3.3服务器端代码实现 2.3.4客…

IDEA下载安装

目录 IDEAWin下载安装 Mac下载安装 IDEA中基本配置&注释修改背景主题为白色修改字体大小鼠标滚轮控制字体大小控制字母大小写提示&#xff08;取消勾选&#xff09;设置自动编译&#xff08;打勾&#xff09;自动保存&#xff08;参数为1&#xff09;设定参数提示&#xff…

.Net Core微服务入门全纪录(五)——Ocelot-API网关(下)

系列文章目录 1、.Net Core微服务入门系列&#xff08;一&#xff09;——项目搭建 2、.Net Core微服务入门全纪录&#xff08;二&#xff09;——Consul-服务注册与发现&#xff08;上&#xff09; 3、.Net Core微服务入门全纪录&#xff08;三&#xff09;——Consul-服务注…