【机器学习实战入门】使用Pandas和OpenCV进行颜色检测

在这里插入图片描述

Python 颜色检测项目

今天的项目将非常有趣和令人兴奋。我们将与颜色打交道,并在项目过程中学习许多概念。颜色检测对于识别物体来说是必要的,它也被用作各种图像编辑和绘图应用的工具。

什么是颜色检测?

颜色检测是检测任何颜色名称的过程。这看起来很简单,对吧?对于人类来说,这是一个极其简单的任务,但对于计算机来说,却不是那么直接。人眼和大脑协同工作将光转化为颜色。我们眼睛中的光感受器将信号传输给大脑,大脑再识别颜色。从小开始,我们就将某些光线与它们的颜色名称联系起来。我们将使用类似的方法来检测颜色名称。
在这里插入图片描述

关于 Python 颜色检测项目

在这个颜色检测 Python 项目中,我们将会构建一个应用程序,通过点击颜色,你可以自动获得颜色的名称。为此,我们将有一个包含颜色名称及其值的数据文件。然后,我们将计算与每种颜色的距离,并找到最短的距离。

数据集

颜色由3种主要颜色组成:红、绿、蓝。在计算机中,我们定义每种颜色的值在0到255的范围内。那么,我们有多少种方式可以定义颜色呢?答案是 256256256 = 16,581,375。大约有1650万种不同的方式来表示颜色。在我们的数据集中,我们需要将每种颜色的值与它们相应的名称对应起来。但不用担心,我们不需要映射所有的值。我们将使用一个包含 RGB 值及其相应名称的数据集。CSV 文件来自以下链接:

  • https://download.csdn.net/download/jrckkyy/90283529

colors.csv 文件包含 865 个颜色名称以及它们的 RGB 和十六进制值。

必备知识

在开始这个带有源代码的 Python 项目之前,你应该熟悉 Python 的计算机视觉库 OpenCV 和 Pandas。

OpenCV、Pandas 和 numpy 是这个 Python 项目中必需的 Python 包。要安装它们,只需在终端中运行这个 pip 命令:

pip install opencv-python numpy pandas
构建 Python 颜色检测项目的步骤

以下是构建可以检测颜色的 Python 应用程序的步骤:

  1. 下载并解压 zip 文件
  • https://download.csdn.net/download/jrckkyy/90283529

项目文件夹包含3个文件:

  • Color_detection.py – 项目的主要源代码。
  • Colorpic.jpg – 用于实验的样本图片。
  • Colors.csv – 包含我们数据集的文件。
  1. 从用户那里获取图像
    我们使用 argparse 库创建一个参数解析器。我们可以直接从命令提示符中提供图像路径:
import argparse
ap = argparse.ArgumentParser()
ap.add_argument('-i', '--image', required=True, help="Image Path")
args = vars(ap.parse_args())
img_path = args['image']
# 使用 OpenCV 读取图像
img = cv2.imread(img_path)
  1. 用 pandas 读取 CSV 文件
    当需要对数据文件如 CSV 进行各种操作时,pandas 库非常有用。pd.read_csv() 读取 CSV 文件并将其加载到 pandas DataFrame 中。我们给每个列分配了一个名称,以便于访问。
# 使用 pandas 读取 CSV 文件并命名每一列
index=["color","color_name","hex","R","G","B"]
csv = pd.read_csv('colors.csv', names=index, header=None)
  1. 在窗口上设置鼠标回调事件
    首先,我们创建一个窗口以显示输入的图像。然后,当鼠标事件发生时,我们设置一个回调函数,该函数将被调用。
cv2.namedWindow('image')
cv2.setMouseCallback('image', draw_function)

通过这些代码行,我们将窗口命名为 ‘image’,并在鼠标事件发生时调用 draw_function()

  1. 创建 draw_function
    它会计算我们双击的像素的 RGB 值。函数参数包括事件名称、鼠标位置的 (x,y) 坐标等。在函数中,我们检查事件是否为双击,如果是,则计算并设置 r、g、b 值以及鼠标的位置。
def draw_function(event, x, y, flags, param):if event == cv2.EVENT_LBUTTONDBLCLK:global b, g, r, xpos, ypos, clickedclicked = Truexpos = xypos = yb, g, r = img[y, x]b = int(b)g = int(g)r = int(r)
  1. 计算距离以获取颜色名称
    我们有 r、g 和 b 的值。现在,我们需要另一个函数,该函数将从 RGB 值返回颜色名称。为了获得颜色名称,我们计算一个距离(d),该距离告诉我们我们离颜色有多近,并选择距离最短的那一个。

我们的距离由以下公式计算:

d = abs(Red – ithRedColor) + abs(Green – ithGreenColor) + abs(Blue – ithBlueColor)
def getColorName(R, G, B):minimum = 10000for i in range(len(csv)):d = abs(R - int(csv.loc[i, "R"])) + abs(G - int(csv.loc[i, "G"])) + abs(B - int(csv.loc[i, "B"]))if(d <= minimum):minimum = dcname = csv.loc[i, "color_name"]return cname
  1. 在窗口上显示图像
    每当双击事件发生时,它将更新窗口上的颜色名称和 RGB 值。

使用 cv2.imshow() 函数,我们在窗口上绘制图像。当用户双击窗口时,我们使用 cv2.rectanglecv2.putText() 函数绘制一个矩形并获取颜色名称以在窗口上显示文本。

while(1):cv2.imshow("image", img)if (clicked):# cv2.rectangle(image, startpoint, endpoint, color, thickness) -1 厚度填满整个矩形cv2.rectangle(img, (20, 20), (750, 60), (b, g, r), -1)# 创建要显示的文本字符串(颜色名称和 RGB 值)text = getColorName(r, g, b) + ' R=' + str(r) + ' G=' + str(g) + ' B=' + str(b)# cv2.putText(img, text, start, font(0-7), fontScale, color, thickness, lineType, (可选的 bottomLeft bool) )cv2.putText(img, text, (50, 50), 2, 0.8, (255, 255, 255), 2, cv2.LINE_AA)# 对于非常浅的颜色,我们将在黑色背景下显示文本if(r + g + b >= 600):cv2.putText(img, text, (50, 50), 2, 0.8, (0, 0, 0), 2, cv2.LINE_AA)clicked = False# 当用户按下 'esc' 键时中断循环if cv2.waitKey(20) & 0xFF == 27:break
cv2.destroyAllWindows()
  1. 运行 Python 文件
    现在这个简单的 Python 项目已经完成,你可以从命令提示符中运行 Python 文件。确保使用 ‘-i’ 参数提供图像路径。如果图像位于另一个目录中,则需要提供图像的完整路径:
python color_detection.py -i <在这里添加你的图像路径>

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

输出

双击窗口以知道像素的颜色名称

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

总结

在这个带有源代码的 Python 项目中,我们学习了颜色以及如何提取像素的 RGB 值和颜色名称。我们学习了如何处理双击窗口等事件,并看到了如何使用 pandas 读取 CSV 文件并执行数据操作。这在许多图像编辑和绘图应用中都有所使用。

参考文献

名称链接
DataFlair Python Projectshttps://data-flair.training/blogs/python-projects/
Python Color Detection Projecthttps://data-flair.training/blogs/python-color-detection-project/
OpenCV Documentationhttps://docs.opencv.org/4.5.1/
Pandas Documentationhttps://pandas.pydata.org/pandas-docs/stable/
Python for Image Processinghttps://realpython.com/python-opencv-color-spaces/
What is Color Detection?https://www.geeksforgeeks.org/color-detection-python-opencv/
How to use argparse in Pythonhttps://docs.python.org/3/howto/argparse.html
A Simple Guide to Pandashttps://towardsdatascience.com/a-simple-guide-to-pandas-2ae0753f5218
Python Colors Datasethttps://github.com/codeifitech/colordetect/blob/master/colors.csv
Color Space Conversionhttps://www.tutorialspoint.com/opencv/opencv_color_spaces.htm
OpenCV 教程https://www.bilibili.com/video/BV18x41147d6/
Python 颜色检测https://zhuanlan.zhihu.com/p/35647438
了解色彩空间https://www.runoob.com/python3/python3-tutorial.html
颜色检测实战http://blog.csdn.net/qq_33066040/article/details/78800004
Python 计算机视觉入门https://morvanzhou.github.io/tutorials/machine-learning/opencv/
用 OpenCV 构建颜色检测器https://medium.com/@billy.r---------/building-a-color-detector-with-opencv-3baf62e6fac9

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/67637.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《CPython Internals》阅读笔记:p232-p249

《CPython Internals》学习第 13天&#xff0c;p232-p249 总结&#xff0c;总计 18 页。 一、技术总结 无。 二、英语总结(生词&#xff1a;1) 1.overhead (1)overhead: over-(“above”) head(“top part, uppermost section”) overhead的字面意思是&#xff1a;above…

动手学大数据-3社区开源实践

目录 数据库概览&#xff1a; MaxComput&#xff1a; HAWQ&#xff1a; Hologres&#xff1a; TiDB&#xff1a; Spark&#xff1a; ClickHouse&#xff1a; Apache Calcite 概览 Calcite RBO HepPlanner 优化规则&#xff08;Rule&#xff09; 内置有100优化规则 …

多平台下Informatica在医疗数据抽取中的应用

一、引言 1.医疗数据抽取与 Informatica 概述 1.1 医疗数据的特点与来源 1.1.1 数据特点 医疗数据具有显著的多样性特点。从数据类型来看&#xff0c;涵盖了结构化数据&#xff0c;如患者的基本信息、检验检查结果等&#xff0c;这些数据通常以表格形式存储&#xff0c;便于…

HTTP / 2

序言 在之前的文章中我们介绍过了 HTTP/1.1 协议&#xff0c;现在再来认识一下迭代版本 2。了解比起 1.1 版本&#xff0c;后面的版本改进在哪里&#xff0c;特点在哪里&#xff1f;话不多说&#xff0c;开始吧⭐️&#xff01; 一、 HTTP / 1.1 存在的问题 很多时候新的版本的…

BUUCTF_Web(October 2019 Twice SQL injection)

October 2019 Twice SQL injection 知识点&#xff1a; 二次注入&#xff1a; 当用户提交的恶意数据被存入数据库后&#xff0c;应用程序再把它读取出来用于生成新的SQL语句时&#xff0c;如果没有相应的安全措施&#xff0c;是有可能发生SQL注入的&#xff0c;这种注入就叫…

Jenkins-pipeline语法说明

一. 简述&#xff1a; Jenkins Pipeline 是一种持续集成和持续交付&#xff08;CI/CD&#xff09;工具&#xff0c;它允许用户通过代码定义构建、测试和部署流程。 二. 关于jenkinsfile&#xff1a; 1. Sections部分&#xff1a; Pipeline里的Sections通常包含一个或多个Direc…

电商项目高级篇08-springCache

电商项目高级篇08-springCache 1、整合springCache2、Cacheable细节设置 1、整合springCache 1、引入依赖 <!--引入springCache--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-cache</artifa…

【tailscale 和 ssh】当服务器建立好节点,但通过客户端无法通过 ssh 连接

背景 当服务器建立好节点&#xff0c;一切显示正常但通过客户端无法通过 vs code 中的 ssh 连接到服务器 问题解决 因为服务器是重装过的&#xff0c;所以忘记在服务器上下载 ssh 了。。。安装完成并启动 SSH 服务后便可正常连接&#xff01; sudo apt update sudo apt in…

python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)边缘检测

OpenCV中边缘检测四种常用算子&#xff1a; &#xff08;1&#xff09;Sobel算子 Sobel算子是一种基于梯度的边缘检测算法。它通过对图像进行卷积操作来计算图像的梯度&#xff0c;并将梯度的大小作为边缘的强度。它使用两个3x3的卷积核&#xff0c;分别用于计…

[实现Rpc] 环境搭建 | JsonCpp | Mudou库 | callBack()

目录 1. 项目介绍 2. 技术选型 3. 开发环境和环境搭建 Ubuntu-22.04环境搭建 1. 安装 wget&#xff08;一般情况下默认会自带&#xff09; 2. 更换国内软件源 ① 备份原始 /etc/apt/sources.list 文件 ② 编辑软件源文件 ③ 更新软件包列表 3. 安装常用工具 3.1 安装…

Golang Gin系列-1:Gin 框架总体概述

本文介绍了Gin框架&#xff0c;探索了它的关键特性&#xff0c;并建立了简单入门的应用程序。在这系列教程里&#xff0c;我们会探索Gin的主要特性&#xff0c;如路由、中间件、数据库集成等&#xff0c;最终能使用Gin框架构建健壮的web应用程序。 总体概述 Gin是Go编程语言的…

Node.js 与 JavaScript 是什么关系

JavaScript 是一种编程语言&#xff0c;而 Node.js 是 JavaScript 的一个运行环境&#xff0c;它们在不同的环境中使用&#xff0c;具有一些共同的语言基础&#xff0c;但也有各自独特的 API 和模块&#xff0c;共同推动着 JavaScript 在前后端开发中的广泛应用。 一、基础语言…

游戏引擎学习第81天

仓库:https://gitee.com/mrxiao_com/2d_game_2 或许我们应该尝试在地面上添加一些绘图 在这段时间的工作中&#xff0c;讨论了如何改进地面渲染的问题。虽然之前并没有专注于渲染部分&#xff0c;因为当时主要的工作重心不在这里&#xff0c;但在实现过程中&#xff0c;发现地…

IO多路复用详解-selectpollepoll

目录 1.IO多路复用概念 2.系统调用函数 2.1select 2.1.1select函数细节 2.2基于select实现并发处理 2.2.1处理流程 2.2.2服务端通信代码 2.2.3客户端通信代码 2.3基于poll函数实现并发处理 2.3.1select与poll函数区别 2.3.2poll函数 2.3.3服务器端代码实现 2.3.4客…

IDEA下载安装

目录 IDEAWin下载安装 Mac下载安装 IDEA中基本配置&注释修改背景主题为白色修改字体大小鼠标滚轮控制字体大小控制字母大小写提示&#xff08;取消勾选&#xff09;设置自动编译&#xff08;打勾&#xff09;自动保存&#xff08;参数为1&#xff09;设定参数提示&#xff…

A Dual-Module Denoising Approach 解读

系列博客目录 文章目录 系列博客目录1.这个GCN有什么用2.GCN是如何增强方面相关的情感表达 1.这个GCN有什么用 在本文中&#xff0c;图卷积网络&#xff08;GCN&#xff09;的作用可以总结为以下几点&#xff1a; 建模多模态依赖关系 GCN 利用 加权关联矩阵 (A)&#xff0c;将…

复用类(1):组合、继承

复用代码是java众多引人注目的功能之一。但要想成为极具革命性的语言&#xff0c;仅仅能够复制代码并对之加以改变是不够的&#xff0c;它还必须能够做更多的事情。 上述方法常为C这类过程型语言所使用&#xff0c;但收效不是很好。正如java中所有事物一样&#xff0c;问题解决…

.Net Core微服务入门全纪录(五)——Ocelot-API网关(下)

系列文章目录 1、.Net Core微服务入门系列&#xff08;一&#xff09;——项目搭建 2、.Net Core微服务入门全纪录&#xff08;二&#xff09;——Consul-服务注册与发现&#xff08;上&#xff09; 3、.Net Core微服务入门全纪录&#xff08;三&#xff09;——Consul-服务注…

RV1126+FFMPEG推流项目(9)AI和AENC模块绑定,并且开启线程采集

前面两篇已经交代AI和AENC模块的配置&#xff0c;这篇就让这两个模块绑定起来&#xff0c;绑定的原因是&#xff0c;Aenc从Ai模块拿到采集的原始数据进行编码。 使用 RK_MPI_SYS_Bind 把 AI 节点和 AENC 进行绑定&#xff0c;其中 enModId 是模块 ID 号选择的是 RK_ID_AI、s32C…

2.5G PoE交换机 TL-SE2109P 简单开箱评测,8个2.5G电口+1个10G光口(SFP+)

TPLINK&#xff08;普联&#xff09;的万兆上联的2.5G网管交换机TL-SE2109P简单开箱测评。8个PoE 2.5G电口&#xff0c;1个万兆SFP上联口。 2.5G交换机 TL-SE2420 简单开箱评测&#xff0c;16个2.5G电口4个10G光口(SFP)&#xff1a;https://blog.zeruns.com/archives/837.html…