KG-CoT:基于知识图谱的大语言模型问答的思维链提示

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

一些符号定义

知识图谱实体数量: n n n
知识图谱中关系类型数量: m m m
三元组矩阵: M ∈ { 0 , 1 } n × n × m \textbf{M} \in \{0, 1\}^{n \times n \times m} M{0,1}n×n×m M i j k = 1 M_{ij}^k = 1 Mijk=1则说明实体 i i i和实体 j j j之间具有关系 k k k
输入问题 q q q:输入的问题
初始实体表示向量 e 0 ∈ { 0 , 1 } n \textbf{e}^0 \in \{0,1\}^n e0{0,1}n,如果输入问题q中存在实体i,则 e i 0 = 1 e^0_i = 1 ei0=1

分步 图推理模型:Step-by-Step Graph Reasoning Model

第一步:关系评分计算(Relation Score Calculation):计算每一步推理的关系得分
在这里插入图片描述
在这里插入图片描述

E n c o d e r Encoder Encoder:文本编码器,例如bert,利用它得到整段文本的表示 q \textbf{q} q和所有字符的表示 h 1 , . . . , h ∣ q ∣ h_1, ..., h_{|q|} h1,...,hq
f t f^{t} ft:推理第 t t t步的编码器(MLP+tanh映射)
q t \textbf{q}^t qt:推理第 t t t步的文本表示
R t \textbf{R}^t Rt:推理第 t t t步的关系评分

第二步:分步推理(Step-by-Step Reasoning):计算每个实体的评分

根据关系评分为实体之间的权重赋值
W i j t = { R k t M i j k = 1 0 Otherwise, W_{ij}^t = \begin{cases} R_k^t & M_{ij}^k = 1 \\ 0 & \text{Otherwise,} \end{cases} Wijt={Rkt0Mijk=1Otherwise,

根据每一步的实体间权重,从初始实体 e 0 \textbf{e}^0 e0开始,得到每一步推理的实体权重,最后通过注意力机制汇总所有的推理步,得到所有实体的评分 e ˉ \bar{\mathbf{e}} eˉ

e t = e t − 1 W t β = Softmax ( MLP ( q ) ) , e ˉ = ∑ t = 1 T β t e t , \mathbf{e}^t = \mathbf{e}^{t-1} \mathbf{W}^t \\ \beta = \text{Softmax}(\text{MLP}(\mathbf{q})), \\ \bar{\mathbf{e}} = \sum_{t=1}^T \beta_t \mathbf{e}^t, et=et1Wtβ=Softmax(MLP(q)),eˉ=t=1Tβtet,

第三步:训练
L = ∥ e ˉ − a ∥ 2 . \mathcal{L} = \|\bar{\textbf{e}} - \textbf{a}\|^2. L=eˉa2.
其中 a \textbf{a} a为候选答案实体。

推理路径生成算法:Reasoning Path Generation Method

步骤1:从知识图谱实体集合中抽取评分( e ˉ \bar{\mathbf{e}} eˉ)前TopK大(之后有不同K取值的对比实验)的实体集合 E k \textbf{E}^k Ek
步骤2:从问题q中的实体开始,向外拓展抽取一跳/两跳路径,需要满足 W i j 1 , W i j 1 W_{ij}^1,W_{ij}^1 Wij1,Wij1均大于0,并且推理结束实体在 E k \textbf{E}^k Ek集合中。
p i j 1 = ⟨ E i , R e l i j , E j , [ W i j 1 ] ⟩ p i k 2 = ⟨ E i , R e l i j , E j , R e l j k , E k , [ W i j 1 , W i j 2 ] ⟩ p_{ij}^1 = \langle E_i, Rel_{ij}, E_j , [W_{ij}^1] \rangle \\ p_{ik}^2 = \langle E_i, Rel_{ij}, E_j, Rel_{jk}, E_k , [W_{ij}^1,W_{ij}^2] \rangle pij1=Ei,Relij,Ej,[Wij1]⟩pik2=Ei,Relij,Ej,Reljk,Ek,[Wij1,Wij2]⟩
步骤3:计算路径的平均W分数作为路径分数,对每个结束实体,挑选路径分数前N大(之后有不同N取值的对比实验)的路径作为大模型的提示模版。

联合推理:Joint Reasoning

将推理路径生成算法得到的推理路径转为文本模版,加入大模型提示中,回答问题。
在这里插入图片描述
在这里插入图片描述

实验

数据集

WebQSP:WebQSP是一个知识密集型的多跳问题回答基准测试。它包含4037个问题,都是基于FreeBase的1跳或2跳问题。基于之前的工作,在问题实体的2跳邻域内检索知识三联体,并生成一个包含1886684个实体、1144个关系和5780246个知识三联体的知识子图。

CompWebQ:CompWebQ是一个多跳的问题回答基准。它包含34,672个问题,有许多跳跃和约束,这使得llm的处理具有挑战性。他们利用[Shi et al.,2021]中检索到的知识子图,并利用原始数据分割进行评估。

Simple Questions:Simple Questions是一个单跳的问题回答基准。问题是基于来自FreeBase的信息而产生的,最终,在本研究中产生了108,442个严重依赖于事实知识的问题。他们随机选择1000个问题,检索问题实体的1跳邻域进行评估。

WebQuestions:WebQuestions是一个具有挑战性的自主领域的问题回答基准。它包含5,810个问题,以自由库作为知识库。对于每个问题,我们检索问题实体的2跳邻域,并利用原始数据分割进行评估。

实验结果

在这里插入图片描述

研究不同基座模型对实验效果的影响

在这里插入图片描述

对比不同检索器

在这里插入图片描述

研究超参数K和超参数N对实验结果的影响

在这里插入图片描述

示例

在这里插入图片描述

优势:计算更快,节省大模型资源

在这里插入图片描述

创新点

提出了一套可训练子图抽取算法,能够结合根据问题得到需要查询关系类型,进而生成许多推理路径。

可能的改进点

在这里插入图片描述

  1. 得到问题 第t步 表示的时候,我认为也需要考虑前t-1步推理路径加入到运算中。

  2. 该方法适用场景受限,由于第一阶段只是对关系类型进行打分,然后将关系分数分配给实体。如果图谱中关系类型很少,三元组数目很多,那么在第二阶段挑选TopK实体的时候,可能会面临很多实体同分的状况,无法挑选合适的实体。除此以外,从问题中可能抽取多个不同的实体,如果分配相同的下一跳关系权重的话,也是不合适的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/66682.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

超完整Docker学习记录,Docker常用命令详解

前言 关于国内拉取不到docker镜像的问题,可以利用Github Action将需要的镜像转存到阿里云私有仓库,然后再通过阿里云私有仓库去拉取就可以了。 参考项目地址:使用Github Action将国外的Docker镜像转存到阿里云私有仓库 一、Docker简介 Do…

AIGC 新浪潮|Story CN meetups 将于 1 月 10-14 日举办!

随着 Web3 行业发展进入全新阶段,与生成式人工智能(AIGC)技术融合正在创造潜力新星项目。也是目前的互联网生态下,任何普通民众都有权利创作高质量的音乐、艺术、散文和视频内容,带来了用户生成内容(UGC&am…

Python基于YOLOv8和OpenCV实现车道线和车辆检测

使用YOLOv8(You Only Look Once)和OpenCV实现车道线和车辆检测,目标是创建一个可以检测道路上的车道并识别车辆的系统,并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。 1、系统主要功能 车道检测&am…

黑马跟学.苍穹外卖.Day04

黑马跟学.苍穹外卖.Day04 苍穹外卖-day04课程内容1. Redis入门1.1 Redis简介1.2 Redis下载与安装1.2.1 Redis下载1.2.2 Redis安装 1.3 Redis服务启动与停止1.3.1 服务启动命令1.3.2 客户端连接命令1.3.3 修改Redis配置文件1.3.4 Redis客户端图形工具 2. Redis数据类型2.1 五种常…

SOLID原则学习,开闭原则

文章目录 1. 定义2. 开闭原则的详细解释3. 实现开闭原则的方法4. 总结 1. 定义 开闭原则(Open-Closed Principle,OCP)是面向对象设计中的五大原则(SOLID)之一,由Bertrand Meyer提出。开闭原则的核心思想是…

filebeat、kafka

elk的架构 es数据库:非关系型数据库,json格式 logstash:收集日志 kibana:图形化的工具 ↓ 以上三种结合起来即为日志收集系统 filebeat 作用:filebeat是一款轻量级的日志收集工具,不依赖java环境&…

Qt重写webrtc的demo peerconnection

整个demo为: 可以选择多个编码方式: cmake_minimum_required(VERSION 3.5)project(untitled LANGUAGES CXX) set(CMAKE_CXX_STANDARD 20) set(CMAKE_INCLUDE_CURRENT_DIR ON)set(CMAKE_AUTOUIC ON) set(CMAKE_AUTOMOC ON) set(CMAKE_AUTORCC ON)set(CMA…

【Notepad++】Notepad++如何删除包含某个字符串所在的行

Notepad如何删除包含某个字符串所在的行 一,简介二,操作方法三,总结 一,简介 在使用beyoundcompare软件进行对比的时候,常常会出现一些无关紧要的地方,且所在行的内容是变化的,不方便进行比较&…

python无需验证码免登录12306抢票 --selenium(2)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 [TOC](python无需验证码免登录12306抢票 --selenium(2)) 前言 提示:这里可以添加本文要记录的大概内容: 就在刚刚我抢的票:2025年1月8日…

CSS 盒模型

盒模型 CSS盒模型是网页布局的核心概念之一,它描述了网页元素的物理结构和元素内容与周围元素之间的关系。根据W3C规范,每个HTML元素都被视为一个矩形盒子,这个盒子由以下四个部分组成: 内容区(Content area&#xff…

WPF的自定义控件控件学习

引入自定义控件 <controls:Intellibox Style"{StaticResource ListSearch-SearchIntellibox}" Width"95" Margin"0,3" MaxResults"200" …

【含开题报告+文档+PPT+源码】基于springboot的农贸菜市场租位管理系统的设计与实现

开题报告 随着信息技术的快速发展和普及&#xff0c;信息化管理已成为各行业提升运营效率和服质量的重要手段。农贸菜市场作为城市生活的重要组成部分&#xff0c;其管理效率和服务水平直接关系到市民的日常生活体验。传统的农贸菜市场租位管理方式往往存在信息不对称、管理效…

华为路由器、交换机、AC、新版本开局远程登录那些坑(Telnet、SSH/HTTP避坑指南)

关于华为设备远程登录配置开启的通用习惯1、HTTP/HTTPS相关服务 http secure-server enablehttp server enable 2、Telnet服务telnet server enable3、SSH服务stelnet server enablessh user admin authentication-type password 「模拟器、工具合集」复制整段内容 链接&…

【论文阅读-思维链的构造方法02】4.1.2 Automatic Construction-02

提示1&#xff1a;本篇博客中涉及4篇相关论文&#xff0c;预计阅读时间10分钟&#xff0c;望各位友友耐心阅读&#xff5e; 提示2&#xff1a;本篇所有涉及的论文已打包发布&#xff0c;不需要任何积分即可下载&#xff0c;指路 --> 论文集下载地址 大模型技术-思维链CoT …

【GIt原理与使用】Git远程仓库

一、理解分布式版本控制系统 我们目前所说的所有内容&#xff08;工作区&#xff0c;暂存区&#xff0c;版本库等等&#xff09;&#xff0c;都是在本地&#xff01;也就是在你的笔记本或者计算机上。而我们的 Git 其实是分布式版本控制系统&#xff01;什么意思呢&#xff1f…

力扣-数组-88 合并两个有序数组

解析 分别维护指向两个数组的指针&#xff0c;不断往后增加指针即可&#xff0c;主要是边界&#xff0c;然后时间复杂度是。 代码 class Solution { public:void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {vector <int> new…

家用万兆网络实践:紧凑型家用服务器静音化改造(二)

大家好&#xff0c;这篇文章我们继续分享家里网络设备的万兆升级和静音改造经验&#xff0c;希望对有类似需求的朋友有所帮助。 写在前面 在上一篇《家用网络升级实践&#xff1a;低成本实现局部万兆&#xff08;一&#xff09;》中&#xff0c;我们留下了一些待解决的问题。…

小程序组件 —— 29 组件案例 - 字体图标的使用

这一节主要是完善公司信息区域&#xff0c;我们需要在文本之前添加一些字体图标&#xff0c;这一节我们学习如何在微信小程序中使用字体图标&#xff1b; 在项目中&#xff0c;我们使用的小图标&#xff0c;一般由公司设计师进行设计&#xff0c;设计好之后上传到阿里巴巴矢量…

RK3562编译Android13 ROOT固件教程,触觉智能开发板演示

本文介绍编译Android13 ROOT权限固件的方法&#xff0c;触觉智能RK3562开发板演示&#xff0c;搭载4核A53处理器&#xff0c;主频高达2.0GHz&#xff1b;内置独立1Tops算力NPU&#xff0c;可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。 关闭seli…

STM32-ADC模数转换

目录 1.0 逐次逼近型ADC 2.0 ADC触发 3.0 ADC时钟 4.0 转换模式 5.0 转换时间 6.0 校准 7.0 硬件电路 8.0 数据手册 9.0 程序实现 9.0.1 时钟初始化 9.0.2 GPIO结构体初始化 9.0.3 ADC结构体初始化 9.0.4 ADC转换 9.0.5 AD初始化 9.0.6 获取ADC值 9.0.7 ADC头文…