【计算机视觉】单目深度估计模型-Depth Anything-V2

概述

本篇将简单介绍Depth Anything V2单目深度估计模型,该模型旨在解决现有的深度估计模型在处理复杂场景、透明或反射物体时的性能限制。与前一代模型相比,V2版本通过采用合成图像训练、增加教师模型容量,并利用大规模伪标签现实数据进行学生模型教学,显著提高了预测精度和效率。

项目地址:Depth Anything V2 论文地址:https://arxiv.org/abs/2406.09414 代码地址:https://github.com/DepthAnything/Depth-Anything-V2/tree/main

微信截图_20241024151920.png

一、模型改进

将所有标记的真实图像替换为合成图像。

微信截图_20241024155319.png

 在Depth Anything V2的研究中,研究团队提出了一种创新的方法,即使用完全合成的图像来替代所有带有标签的真实图像,以训练单目深度估计模型。这一决策背后的原因有几个关键点:

  • 标签精度:研究发现,真实图像中的标签存在粗略的情况,这会导致模型学习到错误的深度信息。特别是在处理细粒度的深度预测时,真实标签的粗糙性会对最终的预测结果造成负面影响。
  • 领域转移问题:虽然合成图像可以提供高质量的深度标签,但它们与真实世界的图像之间存在分布上的差异。为了解决这一问题,研究团队采取了两方面的策略:一是通过增加合成数据的规模来提高其多样性;二是引入了大规模未标记的真实图像,并利用强大的教师模型为这些图像生成伪标签,以作为学生模型训练的数据来源。

通过完全使用合成图像来训练教师模型,并借助教师模型生成的伪标签来训练学生模型,研究团队成功地提高了单目深度估计模型的性能,尤其是在处理细粒度深度信息方面取得了显著进步。这种方法不仅克服了传统使用真实标记图像所带来的问题,也为未来的研究提供了一条可行的路径

扩大教师模型的容量。

微信截图_20241024161224.png

通过训练更大规模的模型来捕捉更丰富的特征表示,进而提高模型的学习能力。论文中采取了以下做法:

  • 教师模型的选择:选择DINOv2-G作为教师模型。DINOv2-G是一个强大的模型,其本身已经在大规模图像上进行了预训练,具备很强的特征提取能力。
  • 利用合成数据训练:使用了五个高精度的合成数据集(共包含595K张图像)来训练这个教师模型。而上一节中用到的合成数据,其好处是可以获得非常精确的深度标签,有助于教师模型学习到高质量的特征表示。
  • 伪标签生成:经过训练后的强大教师模型能够在未标注的真实图像上生成高质量的伪标签。这些伪标签随后被用来训练学生模型,帮助学生模型学习到更接近真实世界的深度预测。

扩大教师模型容量的目的就是为了使其能够更好地捕捉到输入图像中的细微特征,并且这些特征可以通过知识蒸馏的方式传递给学生模型,从而帮助学生模型在较小的规模下也能保持较高的预测精度。

通过大规模伪标记真实图像的桥梁来教授学生模型

微信截图_20241024161050.png

利用上述利用生成的伪标签,团队训练了四个不同规模的学生模型(small, base, large, giant)。学生模型通过模仿教师模型的行为,学习到了如何在真实图像上做出准确的深度预测。这种方法的主要优点是:

  • 增强场景覆盖范围:通过引入大量的未标注真实图像,可以覆盖更多的实际场景,从而增强模型的零样本深度估计能力。
  • 知识转移:通过伪标签,学生模型可以从教师模型那里“继承”到高质量的预测能力,类似于知识蒸馏,但不是在特征层面,而是在标签层面。
  • 安全性:这种方法在标签层面进行知识转移,比在特征或logit级别进行蒸馏更为安全可靠,特别是在教师与学生模型规模差距较大的情况下。

二、使用体验

我们可以在huggingface中在线体验该模型的强大,网址如下:https://huggingface.co/spaces/depth-anything/Depth-Anything-V2

微信截图_20241024161414.png

我们可以上传自己的照片,或者点击下方的示例图片,滑动右边箭头可以对比原图与深度图

微信截图_20241024161518.png

三、代码示例

1、准备工作

首先克隆项目到本地并且安装项目所需的所有 Python 依赖项

git clone https://github.com/DepthAnything/Depth-Anything-V2
cd Depth-Anything-V2
pip install -r requirements.txt
2、模型选择

根据需求,以及硬件选择合适的模型大小,下载下来并且放在checkpoints文件夹下

链接如下(giant尚未发布):

Depth-Anything-V2-Small

Depth-Anything-V2-Base

Depth-Anything-V2-Large

微信截图_20241129144350.png

3、简单示例代码

首先导入相关库

import cv2
import torchfrom depth_anything_v2.dpt import DepthAnythingV2DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'

这里定义了不同的模型配置,您可以根据需要选择不同的配置。

model_configs = {'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}encoder = 'vitl' # or 'vits', 'vitb', 'vitg'

创建了一个 DepthAnythingV2 实例,加载了预训练的权重,并将模型移到了之前确定的设备上,并设置为评估模式...

点击【计算机视觉】单目深度估计模型-Depth Anything-V2查看全文。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/66534.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uni-app图文列表到详情页面切换

需求:参考若依框架后,想实现首页浏览文章列表,没有合适的样式参考,所以需要有效果做到“图文列表到详情页面切换”,查阅了一下案例 发现有相应的案例,在导航栏“模板”中找到了 DCloud 插件市场 PC电脑端访…

日志服务 SQL 引擎全新升级

作者:戴志勇、顾汉杰(执少) SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为…

【微服务】5、服务保护 Sentinel

Sentinel学习内容概述 Sentinel简介与结构 Sentinel是Spring Cloud Alibaba的组件,由阿里巴巴开源,用于服务流量控制和保护。其内部核心库(客户端)包含限流、熔断等功能,微服务引入该库后只需配置规则。规则配置方式有…

matlab编写Newton插值多项式

定义: 即: clear x [1, 2, 3, 4]; % x坐标 y [2, 1, 4, 3]; % y坐标 % 定义目标插值点 xi 2.5;% x: 已知数据点的x坐标% y: 已知数据点的y坐标% xi: 插值点,可以是一个数或一个向量n length(x);% 初始化差商矩阵F zeros(n, n);F(:,1…

unity学习14:unity里的C#脚本的几个基本生命周期方法, 脚本次序order等

目录 1 初始的C# 脚本 1.1 初始的C# 脚本 1.2 创建时2个默认的方法 2 常用的几个生命周期方法 2.1 脚本的生命周期 2.1.1 其中FixedUpdate 方法 的时间间隔,是在这设置的 2.2 c#的基本语法别搞混 2.2.1 基本的语法 2.2.2 内置的方法名,要求更严…

东土科技参股广汽集团飞行汽车初创公司,为低空经济构建新型产业生态

近日,广汽集团旗下专注于飞行汽车领域的初创公司广东高域科技有限公司于2024年12月31日正式成立,在穿透后的股东信息中,东土科技通过广州瓴云科技投资合伙企业(有限合伙)赫然在列。 此前12月18日,广汽集团…

基于Elasticsearch8的向量检索实现相似图形搜索

Elasticsearch8版本增加了KNN向量检索,可以基于此功能实现以图搜图功能。 1、首先创建索引,es提供了类型为dense_vector的字段,用于存储向量,其中dims是向量维度,可以不配置,es会根据第一条插入的向量维度…

PHP如何删除数组中的特定值?

php 中删除数组特定值的方法有三种:unset():直接删除指定索引的值,但会保留数组索引结构和未删除元素,适合小数组。array_filter():根据自定义回调函数筛选数组元素,返回一个新数组,原数组不变&…

计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台

导读:灵犀科技早期基于 Hadoop 构建大数据平台,在战略调整和需求的持续扩增下,数据处理效率、查询性能、资源成本问题随之出现。为此,引入 Apache Doris 替换了复杂技术栈,升级为集存储、加工、服务为一体的统一架构&a…

Netty中用了哪些设计模式?

大家好,我是锋哥。今天分享关于【Netty中用了哪些设计模式?】面试题。希望对大家有帮助; Netty中用了哪些设计模式? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Netty 是一个高性能的网络通信框架,广泛…

Linux操作系统——多线程互斥

目录 一、前言 二、线程互斥 三、多线程访问临界资源所导致的问题 四、Mutex互斥量 1、锁的接口及其使用 定义一个锁(造锁) 初始化锁(改锁) 摧毁锁 上锁 解锁 锁的使用 五、锁的宏初始化 六、锁的原理 七、C封装互斥锁 八、可重入与线程…

conda指定路径安装虚拟python环境

DataBall 助力快速掌握数据集的信息和使用方式,会员享有 百种数据集,持续增加中。 需要更多数据资源和技术解决方案,知识星球: “DataBall - X 数据球(free)” -------------------------------------------------------------…

鸿蒙 ArkUI实现地图找房效果

常用的地图找房功能,是在地图上添加区域、商圈、房源等一些自定义 marker,然后配上自己应用的一些筛选逻辑构成,在这里使用鸿蒙 ArkUI 简单实现下怎么添加区域/商圈、房源等 Marker. 1、开启地图服务 在华为开发者官网,注册应用&…

Kubernetes开发环境minikube | 开发部署apache tomcat web单节点应用

minikube是一个主要用于开发与测试Kubernetes应用的运行环境 本文主要描述在minikube运行环境中部署J2EE tomcat web应用 minikube start --force minikube status 如上所示,在Linux中启动minikube运行环境 service docker start docker version service docker …

Kafka为什么要放弃Zookeeper

1.Kafka简介 Apache Kafka最早是由Linkedin公司开发,后来捐献给了Apack基金会。 Kafka被官方定义为分布式流式处理平台,因为具备高吞吐、可持久化、可水平扩展等特性而被广泛使用。目前Kafka具体如下功能: 消息队列,Kafka具有系统解耦、流…

KUKA机器人如何修改程序并下载到机器人控制器中?

KUKA机器人如何修改程序并下载到机器人控制器中? 如下图所示,首先将使用的网卡的IP地址设置为自动获得, 打开workvisual软件,点击搜索,正常情况下可以搜索到项目文件,选中后双击进入, 如下图所示,此时,workvisual会自动从机器人控制器中下载项目文件到电脑上,耐心等待…

51单片机——8*8LED点阵

LED 点阵的行则为发光二极管的阳极,LED 点阵的列则为发光二极管的阴极 根据 LED 发光二极管导通原理,当阳极为高电平,阴极为低电平则点亮,否则熄灭。 因此通过单片机P0口可控制点阵列,74HC595可控制点阵行 11 脚 SR…

《Rust权威指南》学习笔记(三)

泛型和trait 1.泛型可以提高代码的复用能力,泛型是具体类型或其他属性的抽象代替,可以看成是一种模版,一个占位符,编译器在编译时会将这些占位符替换成具体的类型,这个过程叫做“单态化”,所以使用泛型的…

CentOS: RPM安装、YUM安装、编译安装(详细解释+实例分析!!!)

目录 1.什么是RPM 1.1 RPM软件包命名格式 1.2RPM功能 1.3查询已安装的软件:rpm -q 查询已安装软件的信息 1.4 挂载:使用硬件(光驱 硬盘 u盘等)的方法(重点!!!) 1…

【玩转全栈】----Django连接MySQL

阅前先赞,养好习惯! 目录 1、ORM框架介绍 选择建议 2、安装mysqlclient 3、创建数据库 4、修改settings,连接数据库 5、对数据库进行操作 创建表 删除表 添加数据 删除数据 修改(更新)数据: 获取数据 1、OR…