Python Polars快速入门指南:LazyFrames

前文已经介绍了Polars的Dataframe, Contexts 和 Expressions,本文继续介绍Polars的惰性API。惰性API是该库最强大的功能之一,使用惰性API可以设定一系列操作,而无需立即运行它们。相反,这些操作被保存为计算图,只在必要时运行。这允许Polars在执行前优化查询,在处理数据之前捕获模式错误,并在超出内存限制的数据集上执行内存高效查询。

在这里插入图片描述

创建LazyFrames

惰性API中的核心对象是LazyFrame,你可以通过几种不同的方式创建LazyFrame。要开始学习LazyFrames和lazy API,请看下面的例子:

import numpy as np
import polars as plnum_rows = 5000
rng = np.random.default_rng(seed=7)buildings = {"sqft": rng.exponential(scale=1000, size=num_rows),"price": rng.exponential(scale=100_000, size=num_rows),"year": rng.integers(low=1995, high=2023, size=num_rows),"building_type": rng.choice(["A", "B", "C"], size=num_rows),
}lydf = pl.LazyFrame(buildings)
# lydf = df.lazy()
lydf

还是使用前文的数据集,增加了price字段;这里调用pl.LazyFrame()从buildings中创建LazyFrame。我们也可以使用.lazy()将现有的DataFrame转换为LazyFrame。下面通过示例说明lazy API是如何工作的,查询代码如下:

lazy_query = (lydf.with_columns((pl.col("price") / pl.col("sqft")).alias("price_per_sqft")).filter(pl.col("price_per_sqft") > 100).filter(pl.col("year") < 2010)
)
lazy_query.show_graph()

可能已经注意到,惰性查询返回另一个LazyFrame,而不是实际执行查询。这就是惰性API背后的思想。它只在显式调用查询时执行查询。在执行查询之前,可以检查所谓的查询计划。查询计划查询将触发的步骤顺序,lazy_query.show_graph()显示可视化步骤流程:

在这里插入图片描述

vscode 环境中不能显示,可能需要安装 sudo apt install graphviz 。在polar中从下到上阅读查询计划图,每个方框对应于查询计划中的一个阶段。σ (σ)和π (π)是关系代数中的符号,它们告诉你对数据执行的操作。

了解了延迟查询要做什么之后,就可以实际执行它了。为此,在惰性查询上调用.collect(),根据查询计划对其求值。下面是它的实际效果:

(lazy_query.collect().select(pl.col(["price_per_sqft", "year"]))
)

显示结果:

shape: (1_338, 2)
price_per_sqft	year
f64	i64
552.294274	2006
465.851448	1998
147.77145	2000
147.608287	2009
850.446036	2000
…	…
220.480873	2005
612.279463	2003
1407.598853	2006
955.962262	1996
124.381572	1997

使用.collect()运行延迟查询时,将获得带有结果的常规polar DataFrame。由于过滤条件,仅仅获得到原始1338行。显示的所有price_per_sqft和year值分别大于124而小于154895。为了进一步验证查询是否正确过滤了数据,我们可以查看摘要统计信息:

(lazy_query.collect().select(pl.col(["price_per_sqft", "year"])).describe()
)

返回结果:

shape: (9, 3)
statistic	price_per_sqft	year
str	f64	f64
"count"	1338.0	1338.0
"null_count"	0.0	0.0
"mean"	1197.977747	2001.893124
"std"	5821.706266	4.32589
"min"	100.357816	1995.0
"25%"	174.913631	1998.0
"50%"	299.238917	2002.0
"75%"	703.415704	2006.0
"max"	154895.785598	2009.0

使用.describe()查看汇总统计信息时,可以看到最小的price_per_sqft大约是100,最大的年份是2009。现在我们对惰性API有了一定的了解,但是惰性API的优势是什么。如果整个数据集已经存储在内存中,为什么需要惰性查询来进行分析?继续阅读,看看lazy API真正的亮点在哪里。

scan LazyFrame

在实际应用程序中,在使用Python进行任何处理之前,您很可能将数据存储在外部的静态文件或数据库中。lazy API的主要超级功能之一是,支持处理存储在文件中的大型数据集,而无需将所有数据读入内存。

在处理csv之类的文件时,通常会在分析数据之前将所有数据读入内存。使用Polars的lazy API,可以通过只处理必要的数据来最小化读入内存的数据量。这使得Polars可以优化内存占用和减少计算时间。

下面示例中,使用来自data .gov的电动汽车统计数据。此数据集包含在华盛顿州注册的电动和混合动力汽车的信息。数据中的每一行表示一辆车,每一列包含有关该车的信息。我们可以手动下载该数据进行测试,通过lazy API高效处理文件的关键是使用polar的scan功能。当你扫描文件时,而不是把整个文件读入内存,Polars创建LazyFrame引用文件的数据。与前面一样,在显式执行查询之前不会对数据进行处理。使用以下代码scan electric_cars.csv:

lazy_car_data = pl.scan_csv(local_file_path)
lazy_car_datalazy_car_data.schema
{'VIN (1-10)': Utf8, 'County': Utf8, 'City': Utf8, 'State': Utf8,
'Postal Code': Int64, 'Model Year': Int64, 'Make': Utf8, 'Model': Utf8,
'Electric Vehicle Type': Utf8, 'Clean Alternative Fuel Vehicle (CAFV) Eligibility': Utf8,
'Electric Range': Int64, 'Base MSRP': Int64, 'Legislative District': Int64,
'DOL Vehicle ID': Int64, 'Vehicle Location': Utf8, 'Electric Utility': Utf8,
'2020 Census Tract': Int64}

通过使用scan_csv()创建lazy_car_data。至关重要的是,CSV文件中的数据没有存储在内存中。相反,lazy_car_data从electric_cars.csv中存储的唯一东西是lazy_car_data.schema中的模式。

这样可以查看文件的列名和它们各自的数据类型,它还可以帮助Polars优化在这些数据上运行的查询。实际上,polar必须在执行查询计划的任何步骤之前了解模式。

现在可以使用惰性API对electric_cars.csv中包含的数据运行查询。查询可以包括任意的复杂性表达式,Polars将只存储和处理必要的数据。例如运行以下查询:

lazy_car_query = (lazy_car_data.filter((pl.col("Model Year") >= 2018)).filter(pl.col("Electric Vehicle Type") == "Battery Electric Vehicle (BEV)").groupby(["State", "Make"]).agg(pl.mean("Electric Range").alias("Average Electric Range"),pl.min("Model Year").alias("Oldest Model Year"),pl.count().alias("Number of Cars"),).filter(pl.col("Average Electric Range") > 0).filter(pl.col("Number of Cars") > 5).sort(pl.col("Number of Cars"), descending=True))lazy_car_query.collect()
shape: (20, 5)
┌───────┬───────────┬────────────────────────┬───────────────────┬────────────────┐
│ State ┆ Make      ┆ Average Electric Range ┆ Oldest Model Year ┆ Number of Cars │
│ ---------------            │
│ strstr       ┆ f64                    ┆ i64               ┆ u32            │
╞═══════╪═══════════╪════════════════════════╪═══════════════════╪════════════════╡
│ WA    ┆ TESLA     ┆ 89.114509201855690          │
│ WA    ┆ NISSAN    ┆ 93.11505620185267           │
│ WA    ┆ CHEVROLET ┆ 111.74665120185001           │
│ WA    ┆ KIA       ┆ 65.38042820183178           │
│ …     ┆ …         ┆ …                      ┆ …                 ┆ …              │
│ VA    ┆ TESLA     ┆ 139.133333201815             │
│ MD    ┆ TESLA     ┆ 50.6201810             │
│ TX    ┆ TESLA     ┆ 94.62520188              │
│ NC    ┆ TESLA     ┆ 61.42857120187              │
└───────┴───────────┴────────────────────────┴───────────────────┴────────────────┘

因为这是延迟查询,所以在调用lazy_car_query.collect()之前不会执行任何计算。在执行查询之后,只存储和返回所请求的数据——仅此而已。

从lazy_car_query.collect()返回的DataFrame中的每一行都包括平均续航里程、最旧的车型年份以及每个州和制造商的汽车数量。例如,第一行告诉你,华盛顿州2018年或之后有55690辆特斯拉,它们的平均续航里程约为89.11英里。

通过这个例子可以看到Polars如何使用lazy API以高性能和内存高效的方式从文件中查询数据。这个强大的API使polar比其他DataFrame库有了巨大的优势,你应该尽可能选择使用lazy API。在下一节中,您将了解polar如何与外部数据源和更广泛的Python生态系统集成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/65588.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# 读取多种CAN报文文件转换成统一格式数据,工具类:CanMsgRead

因为经常有读取CAN报文trace文件的需求&#xff0c;而且因为CAN卡不同、记录软件不同会导致CAN报文trace文件的格式都有差异。为了方便自己后续开发&#xff0c;我写了一个CanMsgRead工具类&#xff0c;只要提供CAN报文路径和CAN报文格式的选项即可将文件迅速读取转换为统一的C…

Redis 多机功能 — 复制、Sentinel及集群

Redis 的复制功能通过主从模式实现&#xff0c;允许用户为存储着目标数据库的服务器&#xff08;主服务&#xff09;创建多个拥有相同数据库副本的服务器&#xff08;从服务&#xff09;。让客户端的读请求可以分摊到从服务器中&#xff0c;从而提升性能。复制功能适合对数据一…

计算机网络 (14)数字传输系统

一、定义与原理 数字传输系统&#xff0c;顾名思义&#xff0c;是一种将连续变化的模拟信号转换为离散的数字信号&#xff0c;并通过适当的传输媒介进行传递的系统。在数字传输系统中&#xff0c;信息被编码成一系列的二进制数字&#xff0c;即0和1&#xff0c;这些数字序列能够…

leecode377.组合总和IV

本题其实是多重背包问题&#xff0c;对于价值和重量都是nums[i]的的物品&#xff0c;求装满这个容量为4的背包共有多少种排列方式 如果是组合问题&#xff0c;那么遍历顺序是先物品后背包&#xff0c;这样能保证物品按从小到大顺序依次放置&#xff0c;对于实例1求出来为4&…

【学生管理系统】element ui级联菜单bug

级联后端 通过父id来进行查询 GetMapping("/{parentId}")public BaseResult findAllByParentId(PathVariable("parentId") String parentId){//1 根据父id查询所有城市QueryWrapper<TbCity> queryWrapper new QueryWrapper<>();queryWrapper.…

第十七周:Fast R-CNN论文阅读

Fast R-CNN论文阅读 摘要Abstract文章简介1. 引言2. Fast R-CNN框架2.1 RoI位置信息映射2.2 RoI pooling2.3 分类器与边界框回归器2.4 以VGG16为backbone的Fast RCNN的网络结构 3. 训练细节3.1 采样3.2 多任务损失 4. 优缺点分析总结 摘要 这篇博客介绍了Fast R-CNN&#xff0…

Python爬虫(二)- Requests 高级使用教程

文章目录 前言一、Session 对象1. 简介2. 跨请求保持 Cookie3. 设置缺省数据4. 方法级别参数不被跨请求保持5. 会话作为上下文管理器6. 移除字典参数中的值 二、请求与响应1. 请求与响应对象1.1 获取响应头信息1.2 获取发送到服务器的请求头信息 三、SSL 证书验证1. 忽略 SSL 证…

Java-38 深入浅出 Spring - AOP切面增强 核心概念 相关术语 Proxy配置

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 大数据篇正在更新&#xff01;https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了&#xff1a; MyBatis&#xff…

【算法】复杂性理论初步

六、算法复杂性初步 重要的复杂性类 P P P 的定义 多项式时间内可解的问题 若 L ∈ P L∈P L∈P&#xff0c;则存在确定性多项式时间的图灵机 M M M&#xff0c;使得 M ( x ) 1 ⟺ x ∈ L M(x)1⟺x∈L M(x)1⟺x∈L N P NP NP 的定义 多项式时间内可验证验证解的正确性 &…

python爬虫----爬取视频实战

python爬虫-爬取视频 本次爬取&#xff0c;还是运用的是requests方法 首先进入此网站中&#xff0c;选取你想要爬取的视频&#xff0c;进入视频页面&#xff0c;按F12&#xff0c;将网络中的名称栏向上拉找到第一个并点击&#xff0c;可以在标头中&#xff0c;找到后续我们想要…

大数据面试笔试宝典之Flink面试

1.Flink 是如何支持批流一体的? F link 通过一个底层引擎同时支持流处理和批处理. 在流处理引擎之上,F link 有以下机制: 1)检查点机制和状态机制:用于实现容错、有状态的处理; 2)水印机制:用于实现事件时钟; 3)窗口和触发器:用于限制计算范围,并定义呈现结果的…

coturn docker 项目 搭建【一切正常】

业务需求&#xff1a;需要coturn这个服务 定制语音视频连线 请参考"小红的逃脱外星人追踪计划" coturn项目 本地测试连接服务 turnutils_stunclient -p 3478 127.0.0.1turnutils_stunclient -p 3478 -L 127.0.0.1 127.0.0.1telnet localhost 3478turnutils_uclient …

Linux 笔记 /etc 目录有什么用?

在 Linux 系统中&#xff0c;/etc 目录的全称是 "et cetera"&#xff0c;中文可以翻译为“其他”或“杂项”。这个目录用于存放系统的配置文件和一些启动脚本。名称来源于早期的 Unix 系统设计&#xff0c;当时它被用来存放那些不属于其他特定类别的系统文件。 随着…

Android 学习小记1

目录 先介绍一下Android Studio 看看常见的模板 1. No Activity 2. Empty Activity 3. Gemini API Starter 4. Basic View Activity 5. Bottom Navigation Activity 6. Empty Views Activity 7. Navigation Drawer Views Activity 8. Responsive Views Activity 9. G…

【Compose multiplatform教程06】用IDEA编译Compose Multiplatform常见问题

当我们从Kotlin Multiplatform Wizard | JetBrains 下载ComposeMultiplatform项目时 会遇到无法正常编译/运行的情况&#xff0c;一般网页和桌面是可以正常编译的&#xff0c; 我这里着重解决如下问题 1:Gradle版本不兼容或者Gradle连接超时 2:JDK版本不兼容 3:Gradle依赖库连…

Python + 深度学习从 0 到 1(02 / 99)

希望对你有帮助呀&#xff01;&#xff01;&#x1f49c;&#x1f49c; 如有更好理解的思路&#xff0c;欢迎大家留言补充 ~ 一起加油叭 &#x1f4a6; 欢迎关注、订阅专栏 【深度学习从 0 到 1】谢谢你的支持&#xff01; ⭐ Keras 快速入门&#xff1a; 神经网络的基本数据结…

MySQL 数据库基础

目录 什么是数据库 数据库分类 关系型数据库 非关系型数据库 SQL子语言 MySQL MySQL 存储数据的组织方式 数据库操作 显示当前数据库 创建数据库 使用数据库 删除数据库 什么是数据库 数据库 是一个用于存储、管理和检索数据的系统&#xff0c;可以组织和保存大量…

《Vue3 二》Vue 的模板语法

在 React 中&#xff0c;想要编写 HTML&#xff0c;是使用 JSX&#xff0c;之后通过 Babel 将 JSX 编译成 React.createElement 函数调用&#xff1b;在 Vue 中&#xff0c;也支持 JSX 的开发模式&#xff0c;但大多数情况下都是使用基于 HTML 的模板语法&#xff0c;在模板中允…

高级技巧-使用Mysql 实现根据条件过滤整个分组数据

博客-mysql exists实现过滤所属条件对应分组的全部数据 在数据查询中&#xff0c;有时需要根据某一条件来过滤整个分组的数据&#xff0c;尤其是当某条记录满足特定条件时&#xff0c;需要将该组内的所有记录排除。本文将介绍如何使用 MySQL 的 EXISTS 关键字来实现这种分组过滤…

游戏引擎学习第67天

reviewing “apron”概念以更新区域 我们正在进行模拟区域的扩展工作&#xff0c;目标是通过增加一个更大的区域来支持更丰富的互动&#xff0c;尤其是那些可能超出摄像机视野的内容。现有的模拟区域包括摄像机能看到的区域和其周围的环境区域&#xff0c;但为了保证更高效的游…