吴恩达2022机器学习专项课程C2(高级学习算法)W1(神经网络):2.1神经元与大脑

目录

  • 神经网络
    • 1.初始动机*
    • 2.发展历史
    • 3.深度学习*
    • 4.应用历程
  • 生物神经元
    • 1.基本功能
    • 2.神经元的互动方式
    • 3.信号传递与思维形成
    • 4.神经网络的形成
  • 生物神经元简化
    • 1.生物神经元的结构
    • 2.信号传递过程
    • 3.生物学术语与人工神经网络
  • 人工神经元*
    • 1.模型简化
    • 2.人工神经网络的构建
    • 3.计算和输入
  • 人工神经元vs生物神经元
    • 1.人脑知识的局限性
    • 2.深度学习的研究方向*
  • 神经网络兴起的原因*
    • 1.历史背景
    • 2.两个因素
  • 总结

神经网络

1.初始动机*

神经网络有时也叫人工神经网络,初衷为了模拟人脑或生物大脑的学习和思考方式。现代神经网络虽与初衷有别,但仍保留一些模拟大脑的生物学动机。

2.发展历史

  • 1950年代:神经网络的研究起始。
  • 1980年代和1990年代:神经网络重新流行,并在应用技术如手写数字识别中展现出巨大潜力,被应用于实际问题如邮政编码读取和支票金额解析。
  • 1990年代末:一度再次失宠。
  • 2005年起:神经网络技术复兴并开始与“深度学习”这一术语相结合,重新获得关注。

3.深度学习*

随着时间推移,神经网络技术进化并被普遍称为“深度学习”,这一新名称使其在学术和工业界得到更广泛认可和应用。

4.应用历程

  • 语音识别:先是深度学习技术显著提高了语音识别系统的性能,其中Waibel和Geoff Hinton在此领域做出了重要贡献。
  • 计算机视觉:然后在2012年的ImageNet竞赛成为深度学习在计算机视觉领域的重要转折点,极大地推动了这一技术的发展。
  • 自然语言处理:随后,神经网络技术也开始广泛应用于文本处理和自然语言理解领域。

生物神经元

在这里插入图片描述

1.基本功能

神经元是大脑中的基本工作单元,负责处理和传递信息。它通过电信号进行通信,这些信号可以在神经元之间传递。

2.神经元的互动方式

神经元拥有多个输入端(树突),这些输入端接收来自其他神经元的电信号,接收到的信号在神经元内部被处理(计算),然后通过输出端(轴突)将信号发送出去。

3.信号传递与思维形成

一个神经元的输出可以成为另一个神经元的输入,形成复杂的神经网络,这种神经元间的互动和信号传递是人类思维和认知功能的基础。

4.神经网络的形成

神经元有时会形成新的连接,这种可塑性是学习和记忆的生物学基础。

生物神经元简化

在这里插入图片描述

1.生物神经元的结构

  • 细胞体:神经元的主体部分,包含细胞核,是处理信息的中心。
  • 树突:接收来自其他神经元的信号的输入结构。
  • 轴突:从神经元传出信号到其他神经元的输出结构,通过电脉冲形式传递信号。

2.信号传递过程

神经元通过树突接收电信号,经过细胞体的处理后,通过轴突发送到其他神经元。

3.生物学术语与人工神经网络

虽然了解这些生物学术语有助于理解神经元的工作原理,但在设计和理解人工神经网络时,不必深入了解所有这些细节。

人工神经元*

在这里插入图片描述

1.模型简化

人工神经网络使用简化的数学模型来模拟生物神经元的功能。

2.人工神经网络的构建

在构建人工神经网络或深度学习算法时,通常会模拟多个神经元共同工作,传递和处理信息以实现特定功能。

3.计算和输入

一组神经元接收输入数据,进行计算,然后输出新的数据,这些数据可用于下一组神经元的输入或作为最终结果输出。

人工神经元vs生物神经元

1.人脑知识的局限性

尽管人工神经网络设计受生物神经元启发,但对人脑的理解仍有限。盲目模仿难以构建真正的原始智能,需要继续探索大脑的新工作机制。

2.深度学习的研究方向*

深度学习研究已从生物学启发转向基于工程原理,人们能更有效地使用数学和计算模型开发算法。

神经网络兴起的原因*

在这里插入图片描述

1.历史背景

随着互联网和移动通信的普及,社会的数字化程度显著提高,某些领域的数据量急剧增加。

2.两个因素

  • 当使用大数据训练更大更复杂的神经网络模型时,其性能会显著的不断提高,尤其在处理复杂问题(如语音识别、图像识别和自然语言处理)时,表现远超传统模型。
  • GPU或图形处理器单元的崛起,使计算机更快的处理数据。

总结

神经网络最初的动机是模拟人脑或生物大脑工作,现在的神经网络与初衷的差异很大,主要关注于工程原理而不是生物学,但仍保留一些生物大脑工作方式。神经网络一般由多个神经元组成,这些神经元用于接收数据输入并计算输出结果。由于数字化时代,数据量暴增,传统机器学习模型处理数据的性能变差,因此需要构建更复杂的神经网络处理数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/6494.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java与Go: 生产者消费者模型

什么是生产者消费者模型 生产者-消费者模型(也称为生产者-消费者问题)是一种常见的并发编程模型,用于处理多线程或多进程之间的协同工作。该模型涉及两个主要角色:生产者和消费者,一个次要角色:缓冲区。 生…

18 内核开发-内核重点数据结构学习

课程简介: Linux内核开发入门是一门旨在帮助学习者从最基本的知识开始学习Linux内核开发的入门课程。该课程旨在为对Linux内核开发感兴趣的初学者提供一个扎实的基础,让他们能够理解和参与到Linux内核的开发过程中。 课程特点: 1. 入门级别&…

办公数据分析利器:Excel与Power Query透视功能

数据分析利器:Excel与Power Query透视功能 Excel透视表和Power Query透视功能是强大的数据分析工具,它们使用户能够从大量数据中提取有意义的信息和趋势,可用于汇总、分析和可视化大量数据。 本文通过示例演示Power Query透视功能的一个小技…

Linux专栏08:Linux基本指令之压缩解压缩指令

博客主页:Duck Bro 博客主页系列专栏:Linux专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ Linux基本指令之压缩解压缩指令 编号:08 文章目录 Linu…

Spring Boot与OpenCV:融合机器学习的智能图像与视频处理平台

🧑 作者简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向…

【模板】二维前缀和

原题链接:登录—专业IT笔试面试备考平台_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 二维前缀和板题。 二维前缀和:pre[i][j]a[i][j]pre[i-1][j]pre[i][j-1]-pre[i-1][j-1]; 子矩阵 左上角为(x1,y1) 右下角(x2,y2…

PG控制文件的管理与重建

一.控制文件位置与大小 逻辑位置:pgpobal 表空间中 物理位置:$PGDATA/global/pg_control --pg_global表空间的物理位置就在$PGDATA/global文件夹下 物理大小:8K 二.存放的内容 1.数据库初始化的时候生成的永久化参数,无法更改…

brpc中http2 grpc协议解析

搭建gRPC服务 | bRPC https://blog.csdn.net/INGNIGHT/article/details/132657099 global.cpp http2_rpc_protocol.cpp ParseH2Message解析frame header信息 ParseResult H2Context::ConsumeFrameHead( 这个是固定长度的9字节帧头部,length是,3*8bit…

Mysql技能树学习

查询进阶 别名 MySQL支持在查询数据时为字段名或表名指定别名&#xff0c;指定别名时可以使用AS关键字。 BETWEEN AND条件语句 mysql> SELECT * FROM t_goods WHERE id BETWEEN 6 AND 8; 查询特定数据 &#xff08;CASE&#xff09; select name,case when price <…

Linux 麒麟系统安装

国产麒麟系统官网地址&#xff1a; https://www.openkylin.top/downloads/ 下载该镜像后&#xff0c;使用VMware部署一个虚拟机&#xff1a; 完成虚拟机创建。点击&#xff1a;“开启此虚拟机” 选择“试用试用开放麒麟而不安装&#xff08;T&#xff09;”&#xff0c;进入op…

Cisco Firepower FTD生成troubleshooting File

在出现故障时&#xff0c;需要采集信息 FMC上需要采集对应FTD设备的troubleshooting file system -->health -->monitor 选择相应的FTD&#xff0c;右侧点 generate Generate 4 右上角小红点点开 选择里面的task,就可以看到进度&#xff0c;差不多要10分钟以上 5 完成后…

基于51单片机的交通灯设计—可调时间、夜间模式

基于51单片机的交通灯设计 &#xff08;仿真&#xff0b;程序&#xff0b;原理图&#xff0b;设计报告&#xff09; 功能介绍 具体功能&#xff1a; 1.四方向数码管同时显示时间&#xff1b; 2.LED作红、绿、黄灯 3.三个按键可以调整红绿灯时间&#xff1b; 4.夜间模式&am…

IDEA上文件换行符、分隔符(Line Separator)LF,CR,CRLF错乱影响Git上传Github或Gitee代码

IDEA上文件换行符、分隔符(Line Separator)LF&#xff0c;CR&#xff0c;CRLF错乱影响Git上传Github或Gitee代码 指定目录 然后就可以上传了 OK 一定注意更改Line Separator的文件目录 如果是target目录下的文件,是不能修改为LF的,把target文件删除,再重载一次main文件,就…

FFmpeg学习记录(二)—— ffmpeg多媒体文件处理

1.日志系统 常用的日志级别&#xff1a; AV_LOG_ERRORAV_LOG_WARNINGAV_LOG_INFOAV_LOG_DEBUG #include <stdio.h> #include <libavutil/log.h>int main(int argc, char *argv[]) {av_log_set_level(AV_LOG_DEBUG);av_log(NULL, AV_LOG_DEBUG, "hello worl…

【软考高项】三十一、成本管理4个过程

一、规划成本管理 1、定义、作用 定义&#xff1a;确定如何估算、预算、管理、监督和控制项目成本的过程作用&#xff1a;在整个项目期间为如何管理项目成本提供指南和方向 应该在项目规划阶段的早期就对成本管理工作进行规划&#xff0c;建立各成本管理过程的基本框架&…

RKNN Toolkit2 工具的使用

RKNN Toolkit2 是由瑞芯微电子 (Rockchip) 开发的一套用于深度学习模型优化和推理的工具。它主要面向在瑞芯微SoC上进行AI应用开发&#xff0c;但也可以用于PC平台进行模型的转换、量化、推理等操作。它支持将多种深度学习框架的模型&#xff08;如Caffe, TensorFlow, PyTorch等…

单例、工厂、策略、装饰器设计模式

1. 单例模式&#xff08;Singleton Pattern&#xff09;&#xff1a; 单例模式是一种常用的设计模式&#xff0c;用于确保一个类只有一个实例&#xff0c;并提供一个全局访问点。这种模式的特点是类自己负责保存其唯一的实例&#xff0c;并控制其实例化过程。单例模式广泛应用…

【hackmyvm】vivifytech靶机

渗透思路 信息收集端口扫描端口服务信息目录扫描爆破hydra--sshgit提权 信息收集 ┌──(kali㉿kali)-[~] └─$ fping -ag 192.168.9.0/24 2>/dev/null 192.168.9.119 --主机 192.168.9.164 --靶机个人习惯&#xff0c;也方便后续操作&#xff0c;将IP地址赋值给一个变…

【R语言数据分析】卡方检验

目录 交叉卡方检验 配对卡方检验 趋势卡方检验 交叉卡方检验 交叉卡方表用于比较组间“率”的差异。适用于分类型变量&#xff0c;被检验的分类变量应该是无序分类变量&#xff0c;分组变量可以是有序分组也可以是无序分组。比如比较两种药物治疗某个疾病的效率&#xff0c;…

Jhipster8禁用liquibase

开发环境添加dev,no-liquibase&#xff1b;