边界层气象:脉动量预报方程展开 | 湍流脉动速度方差预报方程 | 平均湍流动能收支方程推导

写成分量形式

原始式子:
∂ u i ′ ∂ t + u ‾ j ∂ u i ′ ∂ x j + u j ′ ∂ u ‾ i ∂ x j + u j ′ ∂ u i ′ ∂ x j = − 1 ρ ‾ ⋅ ∂ p ′ ∂ x i + g θ v ′ θ ‾ v δ i 3 + f ϵ i j 3 u j ′ + v ∂ 2 u i ′ ∂ x j 2 + ∂ ( u i ′ u j ′ ‾ ) ∂ x j \begin{align*} \frac{\partial u_i'}{\partial t}+ \overline u_j\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \overline u_i}{\partial x_j}+u_j'\frac{\partial u_i'}{\partial x_j}= -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}} +g\frac{\theta_v'}{\overline \theta_v}\delta_{i3} +f\epsilon_{ij3}u_j' +v\frac{\partial^2u_i'}{\partial x_j^2} +\frac{\partial (\overline {u_i'u_j'})}{\partial x_j} \end{align*} tui+ujxjui+ujxjui+ujxjui=ρ1xip+gθvθvδi3+fϵij3uj+vxj22ui+xj(uiuj)

x 方向:
∂ u ′ ∂ t + ( u ‾ ∂ u ′ ∂ x + v ‾ ∂ u ′ ∂ y + w ‾ ∂ u ′ ∂ z ) + ( u ′ ∂ u ‾ ∂ x + v ′ ∂ u ‾ ∂ y + w ′ ∂ u ‾ ∂ z ) + ( u ′ ∂ u ′ ∂ x + v ′ ∂ u ′ ∂ y + w ′ ∂ u ′ ∂ z ) = − 1 ρ ‾ ⋅ ∂ p ′ ∂ x + f v ′ + v ∂ 2 u ′ ∂ x 2 + v ∂ 2 u ′ ∂ y 2 + v ∂ 2 u ′ ∂ z 2 + ∂ ( u ′ u ′ ‾ ) ∂ x + ∂ ( u ′ v ′ ‾ ) ∂ y + ∂ ( u ′ w ′ ‾ ) ∂ z \begin{align*} \frac{\partial u'}{\partial t}+ (\overline u\frac{\partial u'}{\partial x}+ \overline v\frac{\partial u'}{\partial y}+ \overline w\frac{\partial u'}{\partial z})+ ( u'\frac{\partial \overline u}{\partial x}+ v'\frac{\partial \overline u}{\partial y}+ w'\frac{\partial \overline u}{\partial z} )+ ( u'\frac{\partial u'}{\partial x}+ v'\frac{\partial u'}{\partial y}+ w'\frac{\partial u'}{\partial z} )=\\ -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x}}\\ +fv'\\ +v\frac{\partial^2u'}{\partial x^2}+ v\frac{\partial^2u'}{\partial y^2}+ v\frac{\partial^2u'}{\partial z^2}\\ +\frac{\partial (\overline {u'u'})}{\partial x}+ \frac{\partial (\overline {u'v'})}{\partial y}+ \frac{\partial (\overline {u'w'})}{\partial z} \end{align*} tu+(uxu+vyu+wzu)+(uxu+vyu+wzu)+(uxu+vyu+wzu)=ρ1xp+fv+vx22u+vy22u+vz22u+x(uu)+y(uv)+z(uw)
y 方向:
∂ v ′ ∂ t + ( u ‾ ∂ v ′ ∂ x + v ‾ ∂ v ′ ∂ y + w ‾ ∂ v ′ ∂ z ) + ( u ′ ∂ v ‾ ∂ x + v ′ ∂ v ‾ ∂ y + w ′ ∂ v ‾ ∂ z ) + ( u ′ ∂ v ′ ∂ x + v ′ ∂ v ′ ∂ y + w ′ ∂ v ′ ∂ z ) = − 1 ρ ‾ ⋅ ∂ p ′ ∂ y − f u ′ + v ∂ 2 v ′ ∂ x 2 + v ∂ 2 v ′ ∂ y 2 + v ∂ 2 v ′ ∂ z 2 + ∂ ( v ′ u ′ ‾ ) ∂ x + ∂ ( v ′ v ′ ‾ ) ∂ y + ∂ ( v ′ w ′ ‾ ) ∂ z \begin{align*} \frac{\partial v'}{\partial t}+ (\overline u\frac{\partial v'}{\partial x}+ \overline v\frac{\partial v'}{\partial y}+ \overline w\frac{\partial v'}{\partial z})+ ( u'\frac{\partial \overline v}{\partial x}+ v'\frac{\partial \overline v}{\partial y}+ w'\frac{\partial \overline v}{\partial z} )+ ( u'\frac{\partial v'}{\partial x}+ v'\frac{\partial v'}{\partial y}+ w'\frac{\partial v'}{\partial z} )=\\ -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial y}}\\ -fu'\\ +v\frac{\partial^2v'}{\partial x^2}+ v\frac{\partial^2v'}{\partial y^2}+ v\frac{\partial^2v'}{\partial z^2}\\ +\frac{\partial (\overline {v'u'})}{\partial x}+ \frac{\partial (\overline {v'v'})}{\partial y}+ \frac{\partial (\overline {v'w'})}{\partial z} \end{align*} tv+(uxv+vyv+wzv)+(uxv+vyv+wzv)+(uxv+vyv+wzv)=ρ1ypfu+vx22v+vy22v+vz22v+x(vu)+y(vv)+z(vw)
z 方向:
∂ w ′ ∂ t + ( u ‾ ∂ w ′ ∂ x + v ‾ ∂ w ′ ∂ y + w ‾ ∂ w ′ ∂ z ) + ( u ′ ∂ w ‾ ∂ x + v ′ ∂ w ‾ ∂ y + w ′ ∂ w ‾ ∂ z ) + ( u ′ ∂ w ′ ∂ x + v ′ ∂ w ′ ∂ y + w ′ ∂ w ′ ∂ z ) = − 1 ρ ‾ ⋅ ∂ p ′ ∂ z + g θ v ′ θ ‾ v + v ∂ 2 w ′ ∂ x 2 + v ∂ 2 w ′ ∂ y 2 + v ∂ 2 w ′ ∂ z 2 + ∂ ( w ′ u ′ ‾ ) ∂ x + ∂ ( w ′ v ′ ‾ ) ∂ y + ∂ ( w ′ w ′ ‾ ) ∂ z \begin{align*} \frac{\partial w'}{\partial t}+ (\overline u\frac{\partial w'}{\partial x}+ \overline v\frac{\partial w'}{\partial y}+ \overline w\frac{\partial w'}{\partial z})+ ( u'\frac{\partial \overline w}{\partial x}+ v'\frac{\partial \overline w}{\partial y}+ w'\frac{\partial \overline w}{\partial z} )+ ( u'\frac{\partial w'}{\partial x}+ v'\frac{\partial w'}{\partial y}+ w'\frac{\partial w'}{\partial z} )=\\ -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial z}}\\ +g\frac{\theta_v'}{\overline \theta_v}\\ +v\frac{\partial^2w'}{\partial x^2}+ v\frac{\partial^2w'}{\partial y^2}+ v\frac{\partial^2w'}{\partial z^2}\\ +\frac{\partial (\overline {w'u'})}{\partial x}+ \frac{\partial (\overline {w'v'})}{\partial y}+ \frac{\partial (\overline {w'w'})}{\partial z} \end{align*} tw+(uxw+vyw+wzw)+(uxw+vyw+wzw)+(uxw+vyw+wzw)=ρ1zp+gθvθv+vx22w+vy22w+vz22w+x(wu)+y(wv)+z(ww)

湍流脉动速度方差得预报方程推导

对于原始式子
∂ u i ′ ∂ t + u ‾ j ∂ u i ′ ∂ x j + u j ′ ∂ u ‾ i ∂ x j + u j ′ ∂ u i ′ ∂ x j = − 1 ρ ‾ ⋅ ∂ p ′ ∂ x i + g θ v ′ θ ‾ v δ i 3 + f ϵ i j 3 u j ′ + v ∂ 2 u i ′ ∂ x j 2 + ∂ ( u i ′ u j ′ ‾ ) ∂ x j \begin{align*} \frac{\partial u_i'}{\partial t}+ \overline u_j\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \overline u_i}{\partial x_j}+u_j'\frac{\partial u_i'}{\partial x_j}= -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}} +g\frac{\theta_v'}{\overline \theta_v}\delta_{i3} +f\epsilon_{ij3}u_j' +v\frac{\partial^2u_i'}{\partial x_j^2} +\frac{\partial (\overline {u_i'u_j'})}{\partial x_j} \end{align*} tui+ujxjui+ujxjui+ujxjui=ρ1xip+gθvθvδi3+fϵij3uj+vxj22ui+xj(uiuj)
在等式两边同时乘以 u i ′ u_i' ui,根据微分的性质进行结合,类似
2 u i ′ ∂ u i ′ ∂ t = ∂ u i ′ 2 ∂ t 2u_i'\frac{\partial u_i'}{\partial t}=\frac{\partial u_i'^2}{\partial t} 2uitui=tui′2
得到
∂ u i ′ 2 ∂ t + u ‾ j ∂ u ′ 2 ∂ x j + 2 u i ′ u j ′ ∂ u ‾ i ∂ x j + 2 u i ′ u j ′ ∂ u i ′ ∂ x j = − 2 u i ′ ρ ‾ ⋅ ∂ p ′ ∂ x i + 2 g θ v ′ θ ‾ v δ i j 3 u j ′ + 2 v u i ′ ∂ 2 u i ′ ∂ x j 2 + 2 u i ′ u i ′ u j ′ ‾ ∂ x j \begin{align*} \frac{\partial u_i'^2}{\partial t}+ \overline u_j\frac{\partial u'^2}{\partial x_j}+ 2u_i'u_j'\frac{\partial \overline u_i}{\partial x_j}+ 2u_i'u_j'\frac{\partial u_i'}{\partial x_j}=\\ -\frac{2u_i'}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}}\\ +2g\frac{\theta_v'}{\overline \theta_v}\delta_{ij3}u_j'\\ +2vu_i'\frac{\partial^2u_i'}{\partial x_j^2}\\ +2u_i'\frac{\overline{u_i'u_j'}}{\partial x_j} \end{align*} tui′2+ujxju′2+2uiujxjui+2uiujxjui=ρ2uixip+2gθvθvδij3uj+2vuixj22ui+2uixjuiuj

其中,左侧第四项可以表示为,其中右侧第二项的右半边为连续方程,其值为 0
2 u i ′ u j ′ ∂ u i ′ ∂ x j = ∂ ( u i ′ 2 u j ′ ) ∂ x j − u i ′ 2 ∂ u j ′ ∂ x j = ∂ ( u i ′ 2 u j ′ ) ∂ x j 【由连续方程 ∂ u j ′ ∂ x j = 0 】 2u_i'u_j'\frac{\partial u_i'}{\partial x_j}= \frac{\partial({{u_i'^2u_j'}})}{\partial x_j}- {u_i'}^2\frac{\partial u_j'}{\partial x_j}= \frac{\partial({{u_i'^2u_j'}})}{\partial x_j}【由连续方程\frac{\partial u_j'}{\partial x_j}=0】 2uiujxjui=xj(ui′2uj)ui2xjuj=xj(ui′2uj)【由连续方程xjuj=0
对于右侧第一项
− 2 u i ′ ρ ‾ ⋅ ∂ p ′ ∂ x i = − 2 ρ ‾ ( ∂ ( u i ′ p ′ ) ∂ x i − ∂ u i ′ ∂ x i p ′ ) , 其中右侧第二项为连续方程,为 0 -\frac{2u_i'}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}}=-\frac{2}{\overline \rho}(\frac{\partial (u_i'p')}{\partial x_i}-\frac{\partial u_i'}{\partial x_i}p'),其中右侧第二项为连续方程,为0 ρ2uixip=ρ2(xi(uip)xiuip),其中右侧第二项为连续方程,为0
因此有
− 2 u i ′ ρ ‾ ⋅ ∂ p ′ ∂ x i = − 2 ρ ‾ ⋅ ∂ ( u i ′ p ′ ) ∂ x i -\frac{2u_i'}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}}=-\frac{2}{\overline \rho}\cdot{ \frac{\partial (u_i'p')}{\partial x_i}} ρ2uixip=ρ2xi(uip)
对于右侧第三项有
2 v u i ′ ∂ 2 u i ′ ∂ x j 2 = v ∂ 2 u i ′ 2 ∂ x j 2 − 2 v ( ∂ u i ′ ∂ x j ) 2 = v ∂ 2 u i ′ 2 ∂ x j 2 − 2 ϵ 2vu_i'\frac{\partial^2u_i'}{\partial x_j^2}= v\frac{\partial^2u_i'^2}{\partial x_j^2}-2v(\frac{\partial u_i'}{\partial x_j})^2=v\frac{\partial^2u_i'^2}{\partial x_j^2}-2\epsilon 2vuixj22ui=vxj22ui′22v(xjui)2=vxj22ui′22ϵ
将上述式子代入后对取雷诺平均,同时忽略两个小项 v ∂ 2 u i ′ 2 ‾ ∂ x j 2 , 2 u i ′ ∂ ( u i ′ u j ′ ) ‾ ∂ x j ‾ v\frac{\partial^2\overline{u_i^{'2}}}{\partial x_j^2},2\overline{u_i'\frac{\partial \overline{(u_i'u_j')}}{\partial x_j}} vxj22ui2,2uixj(uiuj)),得到
∂ u i ′ 2 ‾ ∂ t + u ‾ j ∂ u ′ 2 ‾ ∂ x j = − 2 ρ ‾ ⋅ ∂ ( u i ′ p ′ ) ‾ ∂ x i + 2 g θ ‾ v ( u i ′ θ v ′ ) ‾ δ i j 3 − 2 u i ′ u j ′ ‾ ∂ u i ‾ ∂ x j − ∂ ( u i ′ 2 u j ′ ‾ ) ∂ x j − 2 ϵ \begin{align*} \frac{\partial \overline {u_i'^2}}{\partial t}+ \overline u_j\frac{\partial \overline{u'^2}}{\partial x_j} =\\ -\frac{2}{\overline \rho}\cdot{ \frac{\partial\overline{(u_i'p')}}{\partial x_i}}\\ +2\frac{g}{\overline \theta_v}\overline{(u_i'\theta_v')}\delta_{ij3}\\ -2\overline{u_i'u_j'}\frac{\partial \overline{u_i}}{\partial x_j}\\ -\frac{\partial(\overline{{u_i'^2u_j'}})}{\partial x_j}\\ -2\epsilon \end{align*} tui′2+ujxju′2=ρ2xi(uip)+2θvg(uiθv)δij32uiujxjuixj(ui′2uj)2ϵ

TKE 方程推导

将湍流脉动速度方差展开
写成分量形式 (将湍能耗散项放在了 x 方向,确保下方求和后只有 2 ϵ 2\epsilon 2ϵ):

∂ u ′ 2 ‾ ∂ t + ∂ v ′ 2 ‾ ∂ t + ∂ w ′ 2 ‾ ∂ t + ( u ‾ ∂ u ′ 2 ‾ ∂ x + v ‾ ∂ u ′ 2 ‾ ∂ y + w ‾ ∂ u ′ 2 ‾ ∂ y ) + ( u ‾ ∂ v ′ 2 ‾ ∂ x + v ‾ ∂ v ′ 2 ‾ ∂ y + w ‾ ∂ v ′ 2 ‾ ∂ y ) + ( u ‾ ∂ v ′ 2 ‾ ∂ x + v ‾ ∂ v ′ 2 ‾ ∂ y + w ‾ ∂ v ′ 2 ‾ ∂ y ) = − 2 ρ ‾ ⋅ [ ∂ ( u ′ p ′ ) ‾ ∂ x + ∂ ( v ′ p ′ ) ‾ ∂ y + ∂ ( w ′ p ′ ) ‾ ∂ z ] + 2 g θ ‾ v ( w ′ θ v ′ ‾ ) − 2 ( u ′ u ′ ‾ ∂ u ‾ ∂ x + u ′ v ′ ‾ ∂ u ‾ ∂ y + u ′ w ′ ‾ ∂ u ‾ ∂ x + v ′ u ′ ‾ ∂ v ‾ ∂ z + v ′ v ′ ‾ ∂ v ‾ ∂ y + v ′ w ′ ‾ ∂ v ‾ ∂ z + w ′ u ′ ‾ ∂ w ‾ ∂ z + w ′ v ′ ‾ ∂ w ‾ ∂ y + w ′ w ′ ‾ ∂ w ‾ ∂ z ) − [ ∂ ( u ′ 2 u ′ ) ‾ ∂ x + ∂ ( u ′ 2 v ′ ‾ ) ∂ y + ∂ ( u ′ 2 w ′ ‾ ) ∂ z + ∂ ( v ′ 2 u ′ ) ‾ ∂ x + ∂ ( v ′ 2 v ′ ‾ ) ∂ y + ∂ ( v ′ 2 w ′ ‾ ) ∂ z + ∂ ( w ′ 2 u ′ ) ‾ ∂ x + ∂ ( w ′ 2 v ′ ‾ ) ∂ y + ∂ ( w ′ 2 w ′ ‾ ) ∂ z ] − 2 ϵ \begin{align*} \frac{\partial \overline{{u^{'}}^2}}{\partial t}+ \frac{\partial \overline{{v^{'}}^2}}{\partial t}+ \frac{\partial \overline{{w^{'}}^2}}{\partial t} \\ +(\overline u\frac{\partial \overline{{u^{'}}^2}}{\partial x}+ \overline v\frac{\partial \overline{{u^{'}}^2}}{\partial y}+ \overline w\frac{\partial \overline{{u^{'}}^2}}{\partial y})+(\overline u\frac{\partial \overline{{v^{'}}^2}}{\partial x}+ \overline v\frac{\partial \overline{{v^{'}}^2}}{\partial y}+ \overline w\frac{\partial \overline{{v^{'}}^2}}{\partial y})+ (\overline u\frac{\partial \overline{{v^{'}}^2}}{\partial x}+ \overline v\frac{\partial \overline{{v^{'}}^2}}{\partial y}+ \overline w\frac{\partial \overline{{v^{'}}^2}}{\partial y}) =\\ -\frac{2}{\overline \rho}\cdot{[ \frac{\partial\overline{(u'p')}}{\partial x}+ \frac{\partial\overline{(v'p')}}{\partial y}+ \frac{\partial\overline{(w'p')}}{\partial z}]}\\ +2\frac{g}{\overline \theta_v}(\overline {w'\theta_v^{'}})\\ -2(\overline{u'u'}\frac{\partial \overline u}{\partial x}+ \overline{u'v'}\frac{\partial \overline u}{\partial y}+ \overline{u'w'}\frac{\partial \overline u}{\partial x}+ \overline{v'u'}\frac{\partial \overline v}{\partial z}+ \overline{v'v'}\frac{\partial \overline v}{\partial y}+ \overline{v'w'}\frac{\partial \overline v}{\partial z}+ \overline{w'u'}\frac{\partial \overline w}{\partial z}+ \overline{w'v'}\frac{\partial \overline w}{\partial y}+ \overline{w'w'}\frac{\partial \overline w}{\partial z})\\ -[\frac{\partial (\overline{{u^{'}}^2u')}}{\partial x}+ \frac{\partial (\overline{{u^{'}}^2v'})}{\partial y}+ \frac{\partial (\overline{{u^{'}}^2w'})}{\partial z}+ \frac{\partial (\overline{{v^{'}}^2u')}}{\partial x}+ \frac{\partial (\overline{{v^{'}}^2v'})}{\partial y}+ \frac{\partial (\overline{{v^{'}}^2w'})}{\partial z}+ \frac{\partial (\overline{{w^{'}}^2u')}}{\partial x}+ \frac{\partial (\overline{{w^{'}}^2v'})}{\partial y}+ \frac{\partial (\overline{{w^{'}}^2w'})}{\partial z}] \\ -2\epsilon \end{align*} tu2+tv2+tw2+(uxu2+vyu2+wyu2)+(uxv2+vyv2+wyv2)+(uxv2+vyv2+wyv2)=ρ2[x(up)+y(vp)+z(wp)]+2θvg(wθv)2(uuxu+uvyu+uwxu+vuzv+vvyv+vwzv+wuzw+wvyw+wwzw)[x(u2u)+y(u2v)+z(u2w)+x(v2u)+y(v2v)+z(v2w)+x(w2u)+y(w2v)+z(w2w)]2ϵ

将 (1)除以 1/2,整理后得到 (2)
1 2 [ ∂ ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) ∂ t u ‾ ∂ ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) ∂ x + v ‾ ∂ ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) ∂ y + w ‾ ∂ ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) ∂ z ] = − 1 ρ ‾ ⋅ [ ∂ ( u ′ p ′ ) ‾ ∂ x + ∂ ( v ′ p ′ ) ‾ ∂ y + ∂ ( w ′ p ′ ) ‾ ∂ z ] + g θ ‾ v ( w ′ θ v ′ ‾ ) − ( u ′ u ′ ‾ ∂ u ‾ ∂ x + u ′ v ′ ‾ ∂ u ‾ ∂ y + u ′ w ′ ‾ ∂ u ‾ ∂ x + v ′ u ′ ‾ ∂ v ‾ ∂ z + v ′ v ′ ‾ ∂ v ‾ ∂ y + v ′ w ′ ‾ ∂ v ‾ ∂ z + w ′ u ′ ‾ ∂ w ‾ ∂ z + w ′ v ′ ‾ ∂ w ‾ ∂ y + w ′ w ′ ‾ ∂ w ‾ ∂ z ) − 1 2 [ ∂ u ′ ( u ′ 2 + v ′ 2 + w ′ 2 ) ‾ ∂ x + 1 2 [ ∂ v ′ ( u ′ 2 + v ′ 2 + w ′ 2 ) ‾ ∂ y + 1 2 [ ∂ w ′ ( u ′ 2 + v ′ 2 + w ′ 2 ) ‾ ∂ z ] − ϵ \begin{align*} \frac{1}{2}[ \frac{\partial (\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2})}{\partial t}\\ \overline{u}\frac{\partial (\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2})}{\partial x}+ \overline{v}\frac{\partial (\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2})}{\partial y}+ \overline{w}\frac{\partial (\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2})}{\partial z} ]=\\ -\frac{1}{\overline \rho}\cdot{[ \frac{\partial\overline{(u'p')}}{\partial x}+ \frac{\partial\overline{(v'p')}}{\partial y}+ \frac{\partial\overline{(w'p')}}{\partial z}]}\\ +\frac{g}{\overline \theta_v}(\overline {w'\theta_v^{'}})\\ -(\overline{u'u'}\frac{\partial \overline u}{\partial x}+ \overline{u'v'}\frac{\partial \overline u}{\partial y}+ \overline{u'w'}\frac{\partial \overline u}{\partial x}+ \overline{v'u'}\frac{\partial \overline v}{\partial z}+ \overline{v'v'}\frac{\partial \overline v}{\partial y}+ \overline{v'w'}\frac{\partial \overline v}{\partial z}+ \overline{w'u'}\frac{\partial \overline w}{\partial z}+ \overline{w'v'}\frac{\partial \overline w}{\partial y}+ \overline{w'w'}\frac{\partial \overline w}{\partial z})-\\ \frac{1}{2}[\frac {\partial \overline{ {u'}({{u'}^2}+ {{v'}^2}+{{w'}^2})}}{\partial x}+ \frac{1}{2}[\frac {\partial \overline{ {v'}({{u'}^2}+ {{v'}^2}+{{w'}^2})}}{\partial y}+ \frac{1}{2}[\frac {\partial \overline{ {w'}({{u'}^2}+ {{v'}^2}+{{w'}^2})}}{\partial z} ]- \epsilon \end{align*} 21[t(u2+v2+w2)ux(u2+v2+w2)+vy(u2+v2+w2)+wz(u2+v2+w2)]=ρ1[x(up)+y(vp)+z(wp)]+θvg(wθv)(uuxu+uvyu+uwxu+vuzv+vvyv+vwzv+wuzw+wvyw+wwzw)21[xu(u2+v2+w2)+21[yv(u2+v2+w2)+21[zw(u2+v2+w2)]ϵ 由平均湍流动能表达式 (3)

e ‾ = 1 2 ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) \overline e=\frac{1}{2}(\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2}) e=21(u2+v2+w2)
由于 u, v, w 三者是独立的,因此对平均湍流动能得偏导数等于 u ′ 2 ‾ , v ′ 2 ‾ , w ′ 2 ‾ \overline {{u'}^2},\overline {{v'}^2},\overline {{w'}^2} u2,v2,w2 各自的偏导数之和除以 2,因此将该式代入 (2) 中得到

∂ e ‾ ∂ t + u ‾ ∂ e ‾ ∂ x + v ‾ ∂ e ‾ ∂ y + w ‾ ∂ e ‾ ∂ z = − 1 ρ ‾ ⋅ [ ∂ ( u ′ p ′ ) ‾ ∂ x + ∂ ( v ′ p ′ ) ‾ ∂ y + ∂ ( w ′ p ′ ) ‾ ∂ z ] + g θ ‾ v ( w ′ θ v ′ ‾ ) − ( u ′ u ′ ‾ ∂ u ‾ ∂ x + u ′ v ′ ‾ ∂ u ‾ ∂ y + u ′ w ′ ‾ ∂ u ‾ ∂ x + v ′ u ′ ‾ ∂ v ‾ ∂ z + v ′ v ′ ‾ ∂ v ‾ ∂ y + v ′ w ′ ‾ ∂ v ‾ ∂ z + w ′ u ′ ‾ ∂ w ‾ ∂ z + w ′ v ′ ‾ ∂ w ‾ ∂ y + w ′ w ′ ‾ ∂ w ‾ ∂ z ) − [ ∂ ( u ′ e ) ‾ ∂ x + ∂ ( v ′ e ) ‾ ∂ y + ∂ ( w ′ e ) ‾ ∂ z ] − ϵ \begin{align*} \frac{\partial \overline e}{\partial t}+ \overline{u}\frac{\partial \overline e}{\partial x}+ \overline{v}\frac{\partial \overline e}{\partial y}+ \overline{w}\frac{\partial \overline e}{\partial z} =\\ -\frac{1}{\overline \rho}\cdot{[ \frac{\partial\overline{(u'p')}}{\partial x}+ \frac{\partial\overline{(v'p')}}{\partial y}+ \frac{\partial\overline{(w'p')}}{\partial z}]}\\ +\frac{g}{\overline \theta_v}(\overline {w'\theta_v^{'}})\\ -(\overline{u'u'}\frac{\partial \overline u}{\partial x}+ \overline{u'v'}\frac{\partial \overline u}{\partial y}+ \overline{u'w'}\frac{\partial \overline u}{\partial x}+ \overline{v'u'}\frac{\partial \overline v}{\partial z}+ \overline{v'v'}\frac{\partial \overline v}{\partial y}+ \overline{v'w'}\frac{\partial \overline v}{\partial z}+ \overline{w'u'}\frac{\partial \overline w}{\partial z}+ \overline{w'v'}\frac{\partial \overline w}{\partial y}+ \overline{w'w'}\frac{\partial \overline w}{\partial z})\\ -[\frac{\partial \overline {(u' e)}}{\partial x}+ \frac{\partial \overline {(v' e)}}{\partial y}+ \frac{\partial \overline {(w' e)}}{\partial z} ]-\epsilon\\ \end{align*} te+uxe+vye+wze=ρ1[x(up)+y(vp)+z(wp)]+θvg(wθv)(uuxu+uvyu+uwxu+vuzv+vvyv+vwzv+wuzw+wvyw+wwzw)[x(ue)+y(ve)+z(we)]ϵ

∂ e ‾ ∂ t + u j ‾ ∂ e ‾ ∂ x j = − 1 ρ ‾ ⋅ ∂ ( u i ′ p ′ ) ‾ ∂ x i + g θ ‾ v ( u i ′ θ v ′ ‾ ) δ i 3 − u i ′ u j ′ ‾ ∂ u i ‾ ∂ x j − ∂ ( u j ′ e ) ‾ ∂ x j − ϵ \begin{align*} \frac{\partial \overline e}{\partial t}+ \overline{u_j}\frac{\partial \overline e}{\partial x_j} =\\ -\frac{1}{\overline \rho}\cdot{ \frac{\partial\overline{(u_i'p')}}{\partial x_i} }\\ +\frac{g}{\overline \theta_v}(\overline {u_i'\theta_v^{'}})\delta_{i3}\\ -\overline{u_i'u_j'}\frac{\partial \overline {u_i}}{\partial x_j} \\ -\frac{\partial \overline {(u_j' e)}}{\partial x_j}\\ -\epsilon\\ \end{align*} te+ujxje=ρ1xi(uip)+θvg(uiθv)δi3uiujxjuixj(uje)ϵ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/64220.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT 国际化(翻译)

QT国际化(Internationalization,简称I18N)是指将一个软件应用程序的界面、文本、日期、数字等元素转化为不同的语言和文化习惯的过程。这使得软件能够在不同的国家和地区使用,并且可以根据用户的语言和地区提供本地化的使用体验。…

onnx graph surgeon 的使用详解

文章目录 1. onnx graph surgeon 介绍1.1 作用1.2 onnx-surgeon vs onnx.helper1.2.1 结构对比1.2.2 使用的对比1.3 graph surgeon的使用1.3.1 创建onnx1.3.2 导出子图1.3.3 替换算子2. 案例实战2.1 案例1:onnx创建2.2 案例2:onnx 创建2.3 案例3:子图的提取2.4 案例4:算子替…

3D 生成重建034-NerfDiff借助扩散模型直接生成nerf

3D 生成重建034-NerfDiff借助扩散模型直接生成nerf 文章目录 0 论文工作1 论文方法2 实验结果 0 论文工作 感觉这个论文可能能shapE差不多同时期工作,但是shapE是生成任意种类。 本文提出了一种新颖的单图像视图合成方法NerfDiff,该方法利用神经辐射场 …

【CNN卷积神经网络算法】卷积神经网络

卷积神经网络整体架构 总结 输入层:原始数据(图像) 例如可以输入一张RGB图像,其可以标示为一个三维矩阵,宽W高H和通道数C3对应着RGB卷积层:提取局部特征,变换输入数据为丰富的特征图 网络使用多…

HarmonyOS Next 元服务新建到上架全流程

HarmonyOS Next 元服务新建到上架全流程 接上篇 这篇文章的主要目的是介绍元服务从新建到上家的完整流程 在AGC平台上新建一个项目 链接 一个项目可以多个应用 AGC新建一个元服务应用 新建一个本地元服务项目 如果成功在AGC平台上新建过元服务,那么这里会自动显…

Mac/Windows端长期破解myBase8方法(无需安装火绒)

提醒 不管哪个端,都需要先退出myBase。 Mac 进入用户根目录/Users/c0ny100,即下边是Macintosh HD > 用户 > [你的用户名]这个界面然后按ShiftCommond.,显示隐藏文件。找到.Mybase8.ini文件 打开.Mybase8.ini文件,删除Fir…

【网络安全】【Kali Linux】简单ICMP主机探测

一、参考资料 《Python安全攻防——渗透测试实战指南》,吴涛 等编著,机械工业出版社,2021年10月 二、探测原理 ICMP(ping命令) 三、脚本编写 1、导入所需的库: 2、扫描功能函数: 3、主函数…

Oracle进行exp导出密码中有特殊字符报EXP-00056和ORA-12154错处理

今天,业务人员反馈,在本地进行exp导出时报错,报错内容如下: 在Oracle密码中有特殊字符时,需要加引号,但引号怎么加呢?总结如下: 1、在windows系统中 exp 用户名/“““密码”””n…

MVC流程分析

DisaptcherServlet本质是servlet&#xff0c;执行init()方法&#xff0c;自启动底层执行代码&#xff0c; 作用&#xff1a; 1、读取springmvc配置文件&#xff0c;创建Controller对象&#xff0c;放入容器中&#xff0c;map<"id",对象> 2、接收用户请求&#…

OELOVE 6.0城市列表模板

研究了好久OELOVE6.0源码&#xff0c;一直想将城市列表给单独整出来&#xff0c;做地区排名&#xff0c;但是PHP程序都是加密的&#xff0c;非常难搞&#xff0c;做二开都是要命的处理不了&#xff0c;在这里有一个简单方法可以处理城市列表&#xff0c;并且可以自定义TDK&…

fiddler设置抓取https,还抓取不到https如何解决?

一、清楚 C:\Users\Admin\AppData\Roaming\Microsoft\Crypto\RSA 目录下所有文件&#xff08;首次安装fiddler请忽略&#xff09; 二、清除电脑上的根证书&#xff0c;WINR快捷键&#xff0c;输入&#xff1a;certmgr.msc&#xff0c; 然后回车&#xff0c;查找所有fiddler证书…

【知识】总体标准差和样本标准差有什么区别

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 总体标准差和样本标准差之间的区别主要在于它们的计算方式&#xff0c;特别是在分母的选择上。这种差异是因为我们通常在实际应用中并不总是能够得到整…

WebGL后处理与Cesium后处理阶段

在 Cesium 中&#xff0c;Material 是一个强大的工具&#xff0c;用于定义几何体外观。它允许开发者通过 顶点着色器&#xff08;Vertex Shader&#xff09;和 片段着色器&#xff08;Fragment Shader&#xff09;实现自定义效果。以下将从 Material 架构、着色器编程、以及 GP…

es 3期 第15节-词项查询与跨度查询实战运用

#### 1.Elasticsearch是数据库&#xff0c;不是普通的Java应用程序&#xff0c;传统数据库需要的硬件资源同样需要&#xff0c;提升性能最有效的就是升级硬件。 #### 2.Elasticsearch是文档型数据库&#xff0c;不是关系型数据库&#xff0c;不具备严格的ACID事务特性&#xff…

日常如何保护自己

一、法律层面的保护 获取授权 在对目标系统进行任何测试之前&#xff0c;确保已经获得了合法的授权。这可以是来自目标组织&#xff08;如企业的信息安全部门&#xff09;的书面授权或者合同协议。例如&#xff0c;一家公司聘请外部安全团队来测试其网络安全防御能力&#xff…

.NET 9 已发布,您可以这样升级或更新

.NET 9 已经发布&#xff0c;您可能正在考虑更新您的 ASP.NET Core 应用程序。 我们将介绍更新应用程序所需的内容。从更新 Visual Studio 和下载 .NET SDK 到找出可能破坏应用程序的任何重大更改。 下载 .NET 9 SDK 这些是下载 .NET 9 SDK 所需的步骤。 更新 Visual Studi…

《Python WEB安全 库全攻略》

《Python WEB安全 库全攻略》 一、引言二、Python WEB安全 库概述三、热门 Python WEB 安全库1. Flask-Security项目简介与功能&#xff1a;快速入门&#xff1a;使用场景与优势&#xff1a; 2. Flask-SeaSurf项目用途&#xff1a;项目特点&#xff1a;示例代码&#xff1a; 3.…

【Iot】前端串口serialport.js串口通信库快速入门(附经验总结)

前端串口serialport.js串口通信库快速入门(附经验总结) 一、serialport简介1.1 安装1.2 基本用法1.3 完整示例代码二、问题2.1 数据包被拆分(已解决)2.2 串口返回的多种数据,如何区分类别(待解决)公司项目需要开发一个windows客户端,提供串口modbusRTU数据读取、处理、显…

Linux上安装Anaconda

查看版本 lsb_release -a uname -m x86_64&#xff1a;表示系统是64位。i686、i386&#xff1a;表示系统是32位。 到连接安装对应版本 连接到ldhttps://repo.anaconda.com/archive/ 配置对应的conda环境&#xff0c;export PATH/对应目录/anaconda3/bin:$PATH *注意为bi…

第n年共有多少头母牛(重写)

一、题目 题目描述 有一头母牛&#xff0c;它每年年初生一头小母牛。每头小母牛从第四个年头开始&#xff0c;每年年初也生一头小母牛。请编程实现在第n年的时候&#xff0c;共有多少头母牛&#xff1f; 输入 输入数据由多个测试实例组成&#xff0c;每个测试实例占一行&#x…