yolov5-pytorch-Ultralytics训练+预测+报错处理记录

一、前言

玩一段时间大模型,也该回归一下图像识别。本项目用于记录使用基于Ultralytics的yolov5进行目标检测测试。为什么用Ultralytics呢?答案有3
1、其良好的生态,方便我们部署到其它语言和设备上。因此本次测试结论:大坑没有,小坑不断~
2、对新手极度友好,只要装好依赖,按官方教程就可以运行起来。甚至export.py集成权重文件的各种转换功能比如:转ONNX文件!!
3.其对自定义数据集要求低,训练难度大减。当我们制作训练集时无需考虑吧图片压缩切割到成512x512或者640x640。只管找图标注,Ultralytics在train时会自动帮处理这些不合格尺寸的图片(爽爆了!!!)
在这里插入图片描述

二、简介

本篇使用的yolo5模型大小为yolov5l
由于需要识别一图片些细小的物体,我在Ultralytics的yolov5添加了一些注意力机制,但本次不会展开说,因为添加注意力前后对我们训练和预测的操作流程都没有任何影响。

三、训练

1.数据准备

也不知道是该夸还是该骂( ̄ェ ̄;)
Ultralytics提供了许多训练集数据格式,可以VOC、COCO、SKU等等。
但是label的数据格式不是xml而是txt…额…这就有些坑爹了▄█▀█●
以下我只选用其中一种格式:VOC实现
我采集数据文件夹取名MY_DataSet

(1)数据格式如下:

MY_DataSet
├── images└── train└── val
└── labels└── train└── val
└── dataset.yaml

(2)labels里数据的格式:

labels/train里的文件如下:
在这里插入图片描述
txt内容如下:
在这里插入图片描述
参考图图片如下:
在这里插入图片描述
即数据格式为:种类、x、y、w、h

通过以下方法可以使xml格式转成txt

def convert_annotation(voc_name,image_set,image_id):in_file = open('data/%s/Annotations/%s.xml' % (voc_name,image_id), encoding='utf-8')out_file = open('data/%s/labels/%s/%s.txt' % (voc_name,image_set,image_id), 'w', encoding='utf-8')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').text# difficult = obj.find('Difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

(3)dataset.yaml内部如下:

train: 本文件夹相对于trian.py文件的位置/MY_DataSet/images/train
val: 本文件夹相对于trian.py文件的位置/MY_DataSet/images/val
nc: 4
names: ['华强','西瓜','刀子','背带裤']

(4)修改模型yaml文件

到Ultralytics项目下的models文件夹找到对应yolo5l.yaml文件打开它将

nc: 80 # number of classes

改成你识别类的总数即可,我这只有4类改成4即可。

nc: 4 # number of classes

2.训练

在安装好Ultralytics的yolo5l.yaml和配置好训练数据后运行代码

python train.py --img 512 --batch 16 --epoch 300 --data dataset.yaml的相对位置  --cfg models/yolov5l.yaml --weights yolov5l.pt的位置 

即可!!开始训练

四、预测

默认会保存在项目的runs/train/exp/weights/文件夹中

python detect.py --weights runs/train/exp/weights/best.pt --data 训练集dataset.yaml的相对路径 --source  图片路径

五、报错处理

  1. assert nf > 0 or not augment, f"{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}"
    答:yolov5的数据集里标签格式为.txt,而我的自定义数据集是.xml格式,总而言之,我们要按官方的数据格式来,不能按以前传统的xml来弄。

  2. 卡主并显示

 Downloading https://ultralytics.com/assets/Arial.Unicode.ttf to/root/.config/Ultralytics/Arial.Unicode.ttf...

答:初次运行,yolo5会检测你在/root/.config/Ultralytics的目录下是否有Arial.ttf 文件在,如果没有该文件,它会自动下载给你安装给你安装。由于需要连接该比较耗时。建议直接去网上下载文件

https://ultralytics.com/assets/Arial.Unicode.ttf

如果下载失败也可用我下载的文件,然后放到对应目录下即可。

  1. NotImplementedError(“cannot instantiate %r on your system”
    NotImplementedError: cannot instantiate ‘PosixPath’ on your system

答:这个是在windows运行时会报的问题。在from pathlib import Path前插入如下代码即可

import pathlib
pathlib.PosixPath = pathlib.WindowsPath

在这里插入图片描述

注意:如果要弄到到Linux时,记得把这两行删了

六、结语

训练+预测至此结束咯~~
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/6263.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE5 蓝图入门

基础节点创建: 常量: 按住 1 ,点击鼠标左键,创建常量 二维向量: 按住 2 ,点击鼠标左键,创建二维向量 三维向量: 按住 3 ,点击鼠标左键 乘法: 按住 m 键…

基于node.js+css+html+mysql博客系统

博主介绍: 大家好,本人精通Java、Python、Php、C#、C、C编程语言,同时也熟练掌握微信小程序、Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…

Vue进阶之Vue项目实战(一)

Vue项目实战 项目搭建初始化eslint版本约束版本约束eslint配置 stylelintcspellcz-githusky给拦截举个例子 zx 项目搭建 node版本:20.11.1 pnpm版本:9.0.4 初始化 vue3最新的脚手架 pnpm create vite byelide-demo --template vue-ts pnpm i pnpm dev…

MIPS32 指令架构

指令格式 R 类型 说明: 用于寄存器和寄存器操作 参数说明: Op: 指令操作码Rs: 第一个源操作数寄存器号,参与运算使用Rd: 目的操作数寄存器号,保存结果使用Shamt: 位偏移量,仅在位移指令使用,在此直接置0Func: 指令函…

深入 Django 模型层:数据库设计与 ORM 实践指南

title: 深入 Django 模型层:数据库设计与 ORM 实践指南 date: 2024/5/3 18:25:33 updated: 2024/5/3 18:25:33 categories: 后端开发 tags: Django ORM模型设计数据库关系性能优化数据安全查询操作模型继承 第一章:引言 Django是一个基于Python的开源…

【C++】深入剖析C++11中右值引用和左值引用

目录 一、左值引用 && 右值引用 二、左值引用于右值引用的比较 三、 右值引用使用场景和意义 1、函数返回值 ①移动赋值 ②移动构造 2、STL容器插入接口 ​3、完美转发 一、左值引用 && 右值引用 传统的C语法中就有引用的语法,而C11中新增了…

【简单介绍下Lisp的学习历程】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

Mybatis之Sqlsession、Connection和Transaction三者间的关系

前言 最近在看Mybatis的源码,搜到这篇文章Sqlsession、Connection和Transaction原理与三者间的关系,debug之后发现有不少疑惑,于是按照原文整理了一下,记录下debug中的一些困惑点。 对于我们开发来讲,不管跟任何关系…

django搭建一个AI博客进行YouTube视频自动生成文字博客

文章目录 一、生成Django框架二、项目代码(前端)1、编写前端代码(正文界面)1.1、生产html框架1.2、添加live preview扩展1.3、更改title元素中文本1.4、添加CDN(CSS)样式链接1.5、nav标签1.6、在body标签中…

Python | Leetcode Python题解之第66题加一

题目: 题解: class Solution:def plusOne(self, digits: List[int]) -> List[int]:n len(digits)for i in range(n - 1, -1, -1):if digits[i] ! 9:digits[i] 1for j in range(i 1, n):digits[j] 0return digits# digits 中所有的元素均为 9retu…

手撸Mybatis(三)——收敛SQL操作到SqlSession

本专栏的源码:https://gitee.com/dhi-chen-xiaoyang/yang-mybatis。 引言 在上一章中,我们实现了读取mapper配置并构造相关的mapper代理对象,读取mapper.xml文件中的sql信息等操作,现在,在上一章的基础上&#xff0c…

深度学习:基于TensorFlow、Keras,使用长短期记忆神经网络模型(LSTM)对Microsoft股票进行预测分析

前言 系列专栏:机器学习:高级应用与实践【项目实战100】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学…

分享我的github仓库

这是一个由现代C编写的小型、学习性质的服务器框架,包含压缩,序列化,IO调度,Socket封装,文件配置,日志库等多个完整自研模块,欢迎到我的仓库阅读代码和安装体验,期待任何的建议和反馈…

Docker 加持的安卓手机:随身携带的知识库(一)

这篇文章聊聊,如何借助 Docker ,尝试将一台五年前的手机,构建成一个随身携带的、本地化的知识库。 写在前面 本篇文章,我使用了一台去年从二手平台购入的五年前的手机,K20 Pro。 为了让它能够稳定持续的运行&#xf…

如何从Mac电脑恢复任何删除的视频

Microsoft Office是包括Mac用户在内的人们在世界各地创建文档时使用的最佳软件之一。该软件允许您创建任何类型的文件,如演示文稿、帐户文件和书面文件。您可以使用 MS Office 来完成。所有Microsoft文档都可以在Mac上使用。大多数情况下,您处理文档&…

手搓堆(C语言)

Heap.h #pragma once#include <stdio.h> #include <stdlib.h> #include <assert.h> #include <stdbool.h> #include <string.h> typedef int HPDataType; typedef struct Heap {HPDataType* a;int size;int capacity; }Heap;//初始化 void Heap…

软件工程习题答案2024最新版

习题一答案 一、选择题 软件的主要特性是(A B C)。 A) **无形 **B) 高成本 C) **包括程序和文档 ** D) 可独立构成计算机系统 软件工程三要素是(B)。 A) 技术、方法和工具 B) 方法、工具和过程 C) 方法、对象和类 D) 过程、模型、方法 包含风险分析的软件工程模型是(A)…

深度学习之基于Matlab BP神经网络烟叶成熟度分类

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景 烟叶的成熟度是评估烟叶品质的重要指标之一&#xff0c;它直接影响着烟叶的口感、香气和理化特性。传…

python基础算法题0502

数字反转 无论是字符串反转还是数字反转&#xff0c;其实都一样。 需求 代码 class Solution:def reverse(self, x: int) -> int:if 0 < x < 2 ** 31 - 1:m str(x)[::-1]if int(m)<2**31-1:return int(m)else:return 0if 0 > x > -2 ** 31:y -xn str(y…

uniapp 监听APP切换前台、后台插件 Ba-Lifecycle

监听APP切换前台、后台 Ba-Lifecycle 简介&#xff08;下载地址&#xff09; Ba-Lifecycle 是一款uniapp监听APP切换前台、后台的插件&#xff0c;简单易用。 截图展示 也可关注博客&#xff0c;实时更新最新插件&#xff1a; uniapp 常用原生插件大全 使用方法 在 script…