ArrayList还是LinkedList?

引言

集合作为一种存储数据的容器,是我们日常开发中使用最频繁的对象类型之一。JDK为开发者提供了一系列的集合类型,这些集合类型使用不同的数据结构来实现。因此,不同的集合类型,使用场景也不同。

很多同学在面试的时候,经常会被问到集合的相关问题,比较常见的有ArrayList和LinkedList的区别。

相信大部分同学都能回答上:“ArrayList是基于数组实现,LinkedList是基于链表实现。”

而在回答使用场景的时候,我发现大部分同学的答案是:“ArrayList和LinkedList在新增、删除元素时,LinkedList的效率要高于 ArrayList,而在遍历的时候,ArrayList的效率要高于LinkedList。”这个回答是否准确呢?今天这一讲就带你验证。

初识List接口

在学习List集合类之前,我们先来通过这张图,看下List集合类的接口和类的实现关系:

我们可以看到ArrayList、Vector、LinkedList集合类继承了AbstractList抽象类,而AbstractList实现了List接口,同时也继承了AbstractCollection抽象类。ArrayList、Vector、LinkedList又根据自我定位,分别实现了各自的功能。

ArrayList和Vector使用了数组实现,这两者的实现原理差不多,LinkedList使用了双向链表实现。基础铺垫就到这里,接下来,我们就详细地分析下ArrayList和LinkedList的源码实现。

ArrayList是如何实现的?

ArrayList很常用,先来几道测试题,自检下你对ArrayList的了解程度。

问题1:我们在查看ArrayList的实现类源码时,你会发现对象数组elementData使用了transient修饰,我们知道transient关键字修饰该属性,则表示该属性不会被序列化,然而我们并没有看到文档中说明ArrayList不能被序列化,这是为什么?

问题2:我们在使用ArrayList进行新增、删除时,经常被提醒“使用ArrayList做新增删除操作会影响效率”。那是不是ArrayList在大量新增元素的场景下效率就一定会变慢呢?

问题3:如果让你使用for循环以及迭代循环遍历一个ArrayList,你会使用哪种方式呢?原因是什么?

如果你对这几道测试都没有一个全面的了解,那就跟我一起从数据结构、实现原理以及源码角度重新认识下ArrayList吧。

1.ArrayList实现类

ArrayList实现了List接口,继承了AbstractList抽象类,底层是数组实现的,并且实现了自增扩容数组大小。

ArrayList还实现了Cloneable接口和Serializable接口,所以他可以实现克隆和序列化。

ArrayList还实现了RandomAccess接口。你可能对这个接口比较陌生,不知道具体的用处。通过代码我们可以发现,这个接口其实是一个空接口,什么也没有实现,那ArrayList为什么要去实现它呢?

其实RandomAccess接口是一个标志接口,他标志着“只要实现该接口的List类,都能实现快速随机访问”。

public class ArrayList<E> extends AbstractList<E>implements List<E>, RandomAccess, Cloneable, java.io.Serializable

2.ArrayList属性

ArrayList属性主要由数组长度size、对象数组elementData、初始化容量default_capacity等组成, 其中初始化容量默认大小为10。

  //默认初始化容量private static final int DEFAULT_CAPACITY = 10;//对象数组transient Object[] elementData; //数组长度private int size;

从ArrayList属性来看,它没有被任何的多线程关键字修饰,但elementData被关键字transient修饰了。这就是我在上面提到的第一道测试题:transient关键字修饰该字段则表示该属性不会被序列化,但ArrayList其实是实现了序列化接口,这到底是怎么回事呢?

这还得从“ArrayList是基于数组实现“开始说起,由于ArrayList的数组是基于动态扩增的,所以并不是所有被分配的内存空间都存储了数据。

如果采用外部序列化法实现数组的序列化,会序列化整个数组。ArrayList为了避免这些没有存储数据的内存空间被序列化,内部提供了两个私有方法writeObject以及readObject来自我完成序列化与反序列化,从而在序列化与反序列化数组时节省了空间和时间。

因此使用transient修饰数组,是防止对象数组被其他外部方法序列化。

3.ArrayList构造函数

ArrayList类实现了三个构造函数,第一个是创建ArrayList对象时,传入一个初始化值;第二个是默认创建一个空数组对象;第三个是传入一个集合类型进行初始化。

当ArrayList新增元素时,如果所存储的元素已经超过其已有大小,它会计算元素大小后再进行动态扩容,数组的扩容会导致整个数组进行一次内存复制。因此,我们在初始化ArrayList时,可以通过第一个构造函数合理指定数组初始大小,这样有助于减少数组的扩容次数,从而提高系统性能。

 public ArrayList(int initialCapacity) {//初始化容量不为零时,将根据初始化值创建数组大小if (initialCapacity > 0) {this.elementData = new Object[initialCapacity];} else if (initialCapacity == 0) {//初始化容量为零时,使用默认的空数组this.elementData = EMPTY_ELEMENTDATA;} else {throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity);}}public ArrayList() {//初始化默认为空数组this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;}

4.ArrayList新增元素

ArrayList新增元素的方法有两种,一种是直接将元素加到数组的末尾,另外一种是添加元素到任意位置。

 public boolean add(E e) {ensureCapacityInternal(size + 1);  // Increments modCount!!elementData[size++] = e;return true;}public void add(int index, E element) {rangeCheckForAdd(index);ensureCapacityInternal(size + 1);  // Increments modCount!!System.arraycopy(elementData, index, elementData, index + 1,size - index);elementData[index] = element;size++;}

两个方法的相同之处是在添加元素之前,都会先确认容量大小,如果容量够大,就不用进行扩容;如果容量不够大,就会按照原来数组的1.5倍大小进行扩容,在扩容之后需要将数组复制到新分配的内存地址。

  private void ensureExplicitCapacity(int minCapacity) {modCount++;// overflow-conscious codeif (minCapacity - elementData.length > 0)grow(minCapacity);}private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;private void grow(int minCapacity) {// overflow-conscious codeint oldCapacity = elementData.length;int newCapacity = oldCapacity + (oldCapacity >> 1);if (newCapacity - minCapacity < 0)newCapacity = minCapacity;if (newCapacity - MAX_ARRAY_SIZE > 0)newCapacity = hugeCapacity(minCapacity);// minCapacity is usually close to size, so this is a win:elementData = Arrays.copyOf(elementData, newCapacity);}

当然,两个方法也有不同之处,添加元素到任意位置,会导致在该位置后的所有元素都需要重新排列,而将元素添加到数组的末尾,在没有发生扩容的前提下,是不会有元素复制排序过程的。

这里你就可以找到第二道测试题的答案了。如果我们在初始化时就比较清楚存储数据的大小,就可以在ArrayList初始化时指定数组容量大小,并且在添加元素时,只在数组末尾添加元素,那么ArrayList在大量新增元素的场景下,性能并不会变差,反而比其他List集合的性能要好。

5.ArrayList删除元素

ArrayList的删除方法和添加任意位置元素的方法是有些相同的。ArrayList在每一次有效的删除元素操作之后,都要进行数组的重组,并且删除的元素位置越靠前,数组重组的开销就越大。

 public E remove(int index) {rangeCheck(index);modCount++;E oldValue = elementData(index);int numMoved = size - index - 1;if (numMoved > 0)System.arraycopy(elementData, index+1, elementData, index,numMoved);elementData[--size] = null; // clear to let GC do its workreturn oldValue;}

6.ArrayList遍历元素

由于ArrayList是基于数组实现的,所以在获取元素的时候是非常快捷的。

  public E get(int index) {rangeCheck(index);return elementData(index);}E elementData(int index) {return (E) elementData[index];}

LinkedList是如何实现的?

虽然LinkedList与ArrayList都是List类型的集合,但LinkedList的实现原理却和ArrayList大相径庭,使用场景也不太一样。

LinkedList是基于双向链表数据结构实现的,LinkedList定义了一个Node结构,Node结构中包含了3个部分:元素内容item、前指针prev以及后指针next,代码如下。

 private static class Node<E> {E item;Node<E> next;Node<E> prev;Node(Node<E> prev, E element, Node<E> next) {this.item = element;this.next = next;this.prev = prev;}}

总结一下,LinkedList就是由Node结构对象连接而成的一个双向链表。在JDK1.7之前,LinkedList中只包含了一个Entry结构的header属性,并在初始化的时候默认创建一个空的Entry,用来做header,前后指针指向自己,形成一个循环双向链表。

在JDK1.7之后,LinkedList做了很大的改动,对链表进行了优化。链表的Entry结构换成了Node,内部组成基本没有改变,但LinkedList里面的header属性去掉了,新增了一个Node结构的first属性和一个Node结构的last属性。这样做有以下几点好处:

  • first/last属性能更清晰地表达链表的链头和链尾概念;

  • first/last方式可以在初始化LinkedList的时候节省new一个Entry;

  • first/last方式最重要的性能优化是链头和链尾的插入删除操作更加快捷了。

这里同ArrayList的讲解一样,我将从数据结构、实现原理以及源码分析等几个角度带你深入了解LinkedList。

1.LinkedList实现类

LinkedList类实现了List接口、Deque接口,同时继承了AbstractSequentialList抽象类,LinkedList既实现了List类型又有Queue类型的特点;LinkedList也实现了Cloneable和Serializable接口,同ArrayList一样,可以实现克隆和序列化。

由于LinkedList存储数据的内存地址是不连续的,而是通过指针来定位不连续地址,因此,LinkedList不支持随机快速访问,LinkedList也就不能实现RandomAccess接口。

public class LinkedList<E>extends AbstractSequentialList<E>implements List<E>, Deque<E>, Cloneable, java.io.Serializable

2.LinkedList属性

我们前面讲到了LinkedList的两个重要属性first/last属性,其实还有一个size属性。我们可以看到这三个属性都被transient修饰了,原因很简单,我们在序列化的时候不会只对头尾进行序列化,所以LinkedList也是自行实现readObject和writeObject进行序列化与反序列化。

  transient int size = 0;transient Node<E> first;transient Node<E> last;

3.LinkedList新增元素

LinkedList添加元素的实现很简洁,但添加的方式却有很多种。默认的add (Ee)方法是将添加的元素加到队尾,首先是将last元素置换到临时变量中,生成一个新的Node节点对象,然后将last引用指向新节点对象,之前的last对象的前指针指向新节点对象。

 public boolean add(E e) {linkLast(e);return true;}void linkLast(E e) {final Node<E> l = last;final Node<E> newNode = new Node<>(l, e, null);last = newNode;if (l == null)first = newNode;elsel.next = newNode;size++;modCount++;}

LinkedList也有添加元素到任意位置的方法,如果我们是将元素添加到任意两个元素的中间位置,添加元素操作只会改变前后元素的前后指针,指针将会指向添加的新元素,所以相比ArrayList的添加操作来说,LinkedList的性能优势明显。

 public void add(int index, E element) {checkPositionIndex(index);if (index == size)linkLast(element);elselinkBefore(element, node(index));}void linkBefore(E e, Node<E> succ) {// assert succ != null;final Node<E> pred = succ.prev;final Node<E> newNode = new Node<>(pred, e, succ);succ.prev = newNode;if (pred == null)first = newNode;elsepred.next = newNode;size++;modCount++;}

4.LinkedList删除元素

在LinkedList删除元素的操作中,我们首先要通过循环找到要删除的元素,如果要删除的位置处于List的前半段,就从前往后找;若其位置处于后半段,就从后往前找。

这样做的话,无论要删除较为靠前或较为靠后的元素都是非常高效的,但如果List拥有大量元素,移除的元素又在List的中间段,那效率相对来说会很低。

5.LinkedList遍历元素

LinkedList的获取元素操作实现跟LinkedList的删除元素操作基本类似,通过分前后半段来循环查找到对应的元素。但是通过这种方式来查询元素是非常低效的,特别是在for循环遍历的情况下,每一次循环都会去遍历半个List。

所以在LinkedList循环遍历时,我们可以使用iterator方式迭代循环,直接拿到我们的元素,而不需要通过循环查找List。

总结

前面我们已经从源码的实现角度深入了解了ArrayList和LinkedList的实现原理以及各自的特点。如果你能充分理解这些内容,很多实际应用中的相关性能问题也就迎刃而解了。

就像如果现在还有人跟你说,“ArrayList和LinkedList在新增、删除元素时,LinkedList的效率要高于ArrayList,而在遍历的时候,ArrayList的效率要高于LinkedList”,你还会表示赞同吗?

现在我们不妨通过几组测试来验证一下。这里因为篇幅限制,所以我就直接给出测试结果了,对应的测试代码你可以访问Github查看和下载。

1.ArrayList和LinkedList新增元素操作测试

  • 从集合头部位置新增元素

  • 从集合中间位置新增元素

  • 从集合尾部位置新增元素

测试结果(花费时间):

  • ArrayList>LinkedList

  • ArrayList<LinkedList

  • ArrayList<LinkedList

通过这组测试,我们可以知道LinkedList添加元素的效率未必要高于ArrayList。

由于ArrayList是数组实现的,而数组是一块连续的内存空间,在添加元素到数组头部的时候,需要对头部以后的数据进行复制重排,所以效率很低;而LinkedList是基于链表实现,在添加元素的时候,首先会通过循环查找到添加元素的位置,如果要添加的位置处于List的前半段,就从前往后找;若其位置处于后半段,就从后往前找。因此LinkedList添加元素到头部是非常高效的。

同上可知,ArrayList在添加元素到数组中间时,同样有部分数据需要复制重排,效率也不是很高;LinkedList将元素添加到中间位置,是添加元素最低效率的,因为靠近中间位置,在添加元素之前的循环查找是遍历元素最多的操作。

而在添加元素到尾部的操作中,我们发现,在没有扩容的情况下,ArrayList的效率要高于LinkedList。这是因为ArrayList在添加元素到尾部的时候,不需要复制重排数据,效率非常高。而LinkedList虽然也不用循环查找元素,但LinkedList中多了new对象以及变换指针指向对象的过程,所以效率要低于ArrayList。

说明一下,这里我是基于ArrayList初始化容量足够,排除动态扩容数组容量的情况下进行的测试,如果有动态扩容的情况,ArrayList的效率也会降低。

2.ArrayList和LinkedList删除元素操作测试

  • 从集合头部位置删除元素

  • 从集合中间位置删除元素

  • 从集合尾部位置删除元素

测试结果(花费时间):

  • ArrayList>LinkedList

  • ArrayList<LinkedList

  • ArrayList<LinkedList

ArrayList和LinkedList删除元素操作测试的结果和添加元素操作测试的结果很接近,这是一样的原理,我在这里就不重复讲解了。

3.ArrayList和LinkedList遍历元素操作测试

  • for(;;)循环

  • 迭代器迭代循环

测试结果(花费时间):

  • ArrayList<LinkedList

  • ArrayList≈LinkedList

我们可以看到,LinkedList的for循环性能是最差的,而ArrayList的for循环性能是最好的。

这是因为LinkedList基于链表实现的,在使用for循环的时候,每一次for循环都会去遍历半个List,所以严重影响了遍历的效率;ArrayList则是基于数组实现的,并且实现了RandomAccess接口标志,意味着ArrayList可以实现快速随机访问,所以for循环效率非常高。

LinkedList的迭代循环遍历和ArrayList的迭代循环遍历性能相当,也不会太差,所以在遍历LinkedList时,我们要切忌使用for循环遍历。

思考题

我们通过一个使用for循环遍历删除操作ArrayList数组的例子,思考下ArrayList数组的删除操作应该注意的一些问题。

public static void main(String[] args){ArrayList<String> list = new ArrayList<String>();list.add("a");list.add("a");list.add("b");list.add("b");list.add("c");list.add("c");remove(list);//删除指定的“b”元素for(int i=0; i<list.size(); i++)("c")()()(s : list) {System.out.println("element : " + s)list.get(i)}}

从上面的代码来看,我定义了一个ArrayList数组,里面添加了一些元素,然后我通过remove删除指定的元素。请问以下两种写法,哪种是正确的?

写法1:

public static void remove(ArrayList<String> list) {Iterator<String> it = list.iterator();while (it.hasNext()) {String str = it.next();if (str.equals("b")) {it.remove();}}}

写法2:

public static void remove(ArrayList<String> list) {for (String s : list){if (s.equals("b")) {list.remove(s);}}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/6208.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多列列表OCX控件

VB6写的一个多列列表OCX控件源码&#xff0c;核心就是利用数组划分成多列数据&#xff0c;可装载亿条数据以上&#xff0c;控件引用了四个PictureBox控件分别作为:索引号显示&#xff0c;列表&#xff0c;垂直滚动条和横向滚动条&#xff0c;基本实现列表的添加、修改和删除等功…

文本嵌入的隐私风险:从嵌入向量重建原始文本的探索

随着大型语言模型&#xff08;LLMs&#xff09;的广泛应用&#xff0c;文本嵌入技术在语义相似性编码、搜索、聚类和分类等方面发挥着重要作用。然而&#xff0c;文本嵌入所蕴含的隐私风险尚未得到充分探讨。研究提出了一种控制生成的方法&#xff0c;通过迭代修正和重新嵌入文…

TCP 协议

TCP协议段格式 源/目的端口号&#xff1a;表示数据是从哪个进程来&#xff0c;到哪个进程去。 序号&#xff1a;发送数据的序号。 确认序号&#xff1a;应答报文的序号&#xff0c;用来回复发送方的。 4 位首部长度&#xff1a;一个 TCP 报头&#xff0c;长度是可变的&#xff…

简化Transformer模型,以更少的参数实现更快的训练速度

在深度学习领域&#xff0c;Transformer模型因其卓越的性能而广受欢迎&#xff0c;但其复杂的架构也带来了训练时间长和参数数量多的挑战。ETH Zurich的研究人员Bobby He和Thomas Hofmann在最新研究中提出了一种简化的Transformer模型&#xff0c;通过移除一些非必要的组件&…

【VueUse】超越基本功能的高级 Vue 元素操作

在vue开发中我们经常需要操作DOM元素&#xff0c;从简单的添加类到动态创建元素&#xff0c;这些操作都是不可避免的。而在VueUse库中&#xff0c;Elements相关API函数为我们提供了一系列强大而灵活的工具&#xff0c;帮助我们更轻松地处理DOM元素。无论是优雅地处理元素、动态…

JavaEE技术之MySql高级(索引、索引优化、sql实战、View视图、Mysql日志和锁、多版本并发控制)

文章目录 1. MySQL简介2. MySQL安装2.1 MySQL8新特性2.2 安装MySQL2.2.1 在docker中创建并启动MySQL容器&#xff1a;2.2.2 修改mysql密码2.2.3 重启mysql容器2.2.4 常见问题解决 2.3 字符集问题2.4 远程访问MySQL(用户与权限管理)2.4.0 远程连接问题1、防火墙2、账号不支持远程…

从永远到永远-和弦-挂留和弦

挂留和弦 1.概念2.指型1.Xsus2和弦2.Xsus4和弦 3.应用 1.概念 该篇说下和弦中的“渣男”、“绿茶”&#xff0c;挂留和弦。 挂留&#xff08;suspended&#xff09;和弦是将三和弦的三音替换成大二度或纯四度音形成的&#xff0c;包括挂留二和弦、挂留四和弦两种。 三音是一个…

手撕vector的模拟实现

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇:Solitary_walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”。…

JDK14特性

JDK14 1 概述2 语法层面的变化1_instanceof的模式匹配(预览)2_switch表达式(标准)3_文本块改进(第二次预览)4_Records 记录类型(预览 JEP359) 3 API层面的变化4 关于GC1_G1的NUMA内存分配优化2_弃用SerialCMS,ParNewSerial Old3_删除CMS4_ZGC on macOS and Windows 4 其他变化1…

自学Redis7入门篇一

自学Redis7入门篇一 Redis概述一、Redis是什么&#xff1f;二、Redis能干什么&#xff1f;三、去哪里下四、Redis安装配置五、Redis 10数据类型1.字符串(String)2.列表(List)3.哈希表(Hash)4.集合(Set)5.有序集合(ZSet)6.地理空间(GEO)7.基数统计(HyperLogLog)8.位图(bitmap)9.…

计算机毕业设计PHP+vue体检预约管理系统d1yu38

防止在使用不同数据库时&#xff0c;由于底层数据库技术不同造成接口程序紊乱的问题。通过本次系统设计可以提高自己的编程能力&#xff0c;强化对所学知识的理解和运用 本系统是一个服务于医院先关内容的网站&#xff0c;在用户打开网站的第一眼就要明白网站开发的目的&#x…

01.本地工作目录、暂存区、本地仓库三者的工作关系

1.持续集成 1.持续集成CI 让产品可以快速迭代&#xff0c;同时还能保持高质量。 简化工作 2.持续交付 交付 3.持续部署 部署 4.持续集成实现的思路 gitjenkins 5.版本控制系统 1.版本控制系统概述2.Git基本概述3.Git基本命令 2.本地工作目录、暂存区、本地仓库三者的工作关系…

[数据结构]———归并排序

具体代码&#xff1a;在gitee仓库&#xff1a;登录 - Gitee.com 目录 ​编辑 1.基本思想&#xff1a; 2. 代码解析 1.分析 2.逻辑图 3.运行结果 1.基本思想&#xff1a; 归并排序&#xff08;MERGE-SORT&#xff09;是建立在归并操作上的一种有效的排序算法,该算法是采用分…

算法打卡day40

今日任务&#xff1a; 1&#xff09;139.单词拆分 2&#xff09;多重背包理论基础&#xff08;卡码网56携带矿石资源&#xff09; 3&#xff09;背包问题总结 4&#xff09;复习day15 139单词拆分 题目链接&#xff1a;139. 单词拆分 - 力扣&#xff08;LeetCode&#xff09; …

Pytorch学习笔记——TensorBoard的初使用

1、TensorBoard介绍 TensorBoard是TensorFlow的可视化工具&#xff0c;但它也可以与PyTorch结合使用。TensorBoard提供了一个Web界面&#xff0c;可以展示你训练过程中的各种信息&#xff0c;如损失值、准确度、权重分布等&#xff0c;更好地帮助开发者理解和调试模型。 Tenso…

huggingface里如何查看具体任务的评估指标

如果我们在做一个模型训练任务的时候&#xff0c;可能会不知道这个任务在评估的时候使用什么指标&#xff0c;那么huggingface里边为我们提供了参考&#xff1a; 下面就来看看吧&#xff1a; https://huggingface.co/https://huggingface.co/ 点击"Docs"&#xff…

【算法】【单调栈】【leetcode】1019. 链表中的下一个更大节点

刷这题之前先看&#xff1a; 【算法】【OD算法】【单调栈】找朋友-CSDN博客 【算法】【单调栈】【leetcode】1475. 商品折扣后的最终价格-CSDN博客 【算法】【单调栈】【leetcode】901. 股票价格跨度-CSDN博客 【算法】【单调栈】每日温度-CSDN博客 题目地址&#xff1…

嵌入式硬件中PCB走线与过孔的电流承载能力分析

简介 使用FR4敷铜板PCBA上各个器件之间的电气连接是通过其各层敷着的铜箔走线和过孔来实现的。 由于不同产品、不同模块电流大小不同,为实现各个功能,设计人员需要知道所设计的走线和过孔能否承载相应的电流,以实现产品的功能,防止过流时产品烧毁。 文中介绍设计和测试FR4敷…

iOS分享弹窗

klkxxy/分享菜单弹窗

抖音视频0粉营销推广墙纸,当日收益,第二天提现,日入300

项目简介&#xff1a; 这个项目非常易于执行&#xff0c;主要涉及在抖音平台上分享爱国主题的壁纸&#xff0c;并通过推广相关的小程序来实现盈利。 下 载 地 址 &#xff1a; laoa1.cn/1849.html 项目操作简便&#xff0c;一般只需花费1个小时即可完成&#xff0c;一旦掌…