基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1卷积神经网络(CNN)在时间序列中的应用

4.2 长短时记忆网络(LSTM)处理序列依赖关系

4.3 注意力机制(Attention)

4.4 GWO优化

5.算法完整程序工程


1.算法运行效果图预览

优化前

优化后

2.算法运行软件版本

matlab2022a

3.部分核心程序

..........................................................................a=2*(1-(t/Iters));  for i=1:Numfor j=1:dim       r1      = rand; r2      = rand;A1      = 2*a*r1-a;%C1      = 2*r2;    %D_alpha = abs(C1*Alpx(j)-xpos(i,j));%X1      = Alpx(j)-A1*D_alpha;       %r1      = rand; r2      = rand;A2      = 2*a*r1-a; %C2      = 2*r2; %D_beta  = abs(C2*btx(j)-xpos(i,j)); %X2      = btx(j)-A2*D_beta; %    r1      = rand; r2      = rand;A3      = 2*a*r1-a; %C3      = 2*r2; %D_delta = abs(C3*dltx(j)-xpos(i,j)); %X3      = dltx(j)-A3*D_delta; %           xpos(i,j) = (X1+X2+X3)/3;%if xpos(i,j)>=Lmax(j)xpos(i,j)=Lmax(j);endif xpos(i,j)<=Lmin(j)xpos(i,j)=Lmin(j);endendend
endLR             = Alpx(1)
numHiddenUnits = floor(Alpx(2))+1........................................................................%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;%网络结构
analyzeNetwork(Net)figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid onsubplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid onsubplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);save R2.mat Num2 Tat_test T_sim2 
132

4.算法理论概述

        时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。灰狼优化(GWO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。

4.1卷积神经网络(CNN)在时间序列中的应用

        在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

        CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 长短时记忆网络(LSTM)处理序列依赖关系

        LSTM单元能够有效捕捉时间序列中的长期依赖关系。在一个时间步t,LSTM的内部状态h_t和隐藏状态c_t更新如下:

        长短时记忆网络是一种特殊的循环神经网络(RNN),设计用于解决长序列依赖问题。在时间序列预测中,LSTM能够有效地捕捉时间序列中的长期依赖关系。

4.3 注意力机制(Attention)

         注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。     

         CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

4.4 GWO优化

       灰狼优化(Grey Wolf Optimizer, GWO)是一种受到灰狼社群行为启发的全球优化算法,由Seyedali Mirjalili等于2014年提出。它模仿了灰狼在自然界中的领导层次结构、狩猎策略以及社会共存机制,以解决各种复杂的优化问题。与遗传算法类似,GWO也是基于种群的优化技术,但其独特的搜索策略和更新规则使其在处理某些类型的问题时展现出不同的优势。

        在GWO算法中,灰狼被分为四类:α(领头狼)、β(第二领导者)、δ(第三领导者)以及普通狼(Ω)。在每次迭代中,这些角色对应于当前种群中适应度最好的三个解以及其余的解。通过模拟这些狼在捕食过程中的协作与竞争,算法逐步向全局最优解靠近。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/6015.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Visio 2021 (64bit)安装教程

Visio 2021 (64bit)安装教程 ​ 通知公告 Visio 2021 (64位) 是一款流程图和图表设计工具,主要用于创建和编辑各种类型的图表和图形。它提供了一个直观的界面和丰富的功能,可以帮助用户快速绘制专业的流程图、组织结构图、网络图、平面图、数据库模型等。 具体来说,Visio 20…

笔记1--Llama 3 超级课堂 | Llama3概述与演进历程

1、Llama 3概述 https://github.com/SmartFlowAI/Llama3-Tutorial.git 【Llama 3 五一超级课堂 | Llama3概述与演进历程】 2、Llama 3 改进点 【最新【大模型微调】大模型llama3技术全面解析 大模型应用部署 据说llama3不满足scaling law&#xff1f;】…

05.Git标签管理

Git标签管理 #创建一个标签 [rootgitlab ~/demo]#git tag -a "v1.1" -m "first" [rootgitlab ~/demo]# git tag v1.1 #查看标签信息 [rootgitlab ~/demo]# git show v1.1 tag v1.1 Tagger: quyunlong <quyunlongfoxmail.com> Date: Tue Oct 18…

【DevOps】发布自建镜像到Harbor镜像仓库

本博文介绍了开源的本地部署Docker镜像仓库Harbor&#xff0c; 并讲解怎么样在ubuntu20.04上安装配置Harbor&#xff0c;最后用一个Web应用发布成镜像&#xff0c;推送到镜像仓库的例子结尾。学习本博文并按照步骤进行操作&#xff0c;你将掌握搭建本地镜像仓库&#xff0c;并将…

OpenCV 实现重新映射(53)

返回:OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV 实现霍夫圆变换(52) 下一篇 :OpenCV实现仿射变换(54) 目标 在本教程中&#xff0c;您将学习如何&#xff1a; 一个。使用 OpenCV 函数 cv&#xff1a;&#xff1a;remap 实现简…

STM32——点亮第一个LED灯

代码示例&#xff1a; #include "stm32f10x.h" // Device headerint main() {RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//开启时钟GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode GPIO_Mode_Out_PP;GPIO_InitSt…

c# winform快速建websocket服务器源码 wpf快速搭建websocket服务 c#简单建立websocket服务 websocket快速搭建

完整源码下载----->点击 随着互联网技术的飞速发展&#xff0c;实时交互和数据推送已成为众多应用的核心需求。传统的HTTP协议&#xff0c;基于请求-响应模型&#xff0c;无法满足现代Web应用对低延迟、双向通信的高标准要求。在此背景下&#xff0c;WebSocket协议应运而生…

【51单片机普中板子74LS138+245+573可调时钟整点蜂鸣中级应用】2022-12-7

缘由用51单片机普中开发板实现数字时钟-嵌入式-CSDN问答 #include "reg52.h" //定义按键 sbit key0P3^0; sbit key1P3^1; sbit key2P3^2; sbit key3P3^3; //定义数码管位驱运位 sbit L1P2^2; sbit L2P2^3; sbit L3P2^4; sbit beepP2^5; unsigned char code ShuMaGua…

一周零碎时间练习微服务(nacos,rq,springcloud,es等)内容

目录 1 总览1.1 技术架构1.2 其他1.2.1 数据库1.2.2 后端部分1.2.2.1 复习feign1.2.2.2 复习下网关网关的核心功能特性&#xff1a;网关路由的流程断言工厂过滤器工厂全局过滤器 过滤器执行顺序解决跨域问题 1.2.2.3 es部分复习 1.2.3 前端部分 2 day1 配置网关2.1 任务2.2 网关…

ThreeJS:项目搭建

介绍如何基于Vite、Vue、React构建ThreeJS项目。 Vite项目 1. 初始化项目&#xff0c;命令&#xff1a;npm init vitelatest&#xff0c; 2. 安装依赖&#xff0c;命令&#xff1a;npm install&#xff0c; 3. 启动项目&#xff0c;命令&#xff1a;npm run dev。 4. 样式初始…

【LeetCode刷题记录】简单篇-94-二叉树的中序遍历

【题目描述】 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 【测试用例】 示例1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,3,2] 示例2&#xff1a; 输入&#xff1a;root [ ] 输出&#xff1a;[ ] 示例3&#xff1a; 输入…

ThreeJS:本地部署官网文档与案例

部署方式 部署之前请确保已经配置好node.js环境。 1. 下载ThreeJS源码 ThreeJS的GitHub地址&#xff1a;GitHub - mrdoob/three.js: JavaScript 3D Library.&#xff0c;可以简单查看ThreeJS当前版本&#xff1a;r164&#xff0c; 我们可以选择对应的版本&#xff08;此处为r1…

win11 Terminal 部分窗口美化

需求及分析&#xff1a;因为在 cmd、anaconda prompt 窗口中输入命令较多&#xff0c;而命令输入行和输出结果都是同一个颜色&#xff0c;不易阅读&#xff0c;故将需求定性为「美化窗口」。 美化结束后&#xff0c;我在想是否能不安装任何软件&#xff0c;简单地通过调整主题颜…

备考2024年上海初中生古诗文大会:单选题真题示例和独家解析

现在距离2024年初中生古诗文大会还有四个多月时间&#xff0c;备考要趁早&#xff0c;因为知识点还是相对比较多的。这些知识点对于初中语文的学习也是很有帮助的。 我们继续来看10道历年真题&#xff0c;这些真题来自于过去历年真题的去重、汇总&#xff0c;每道题都有参考答…

2-手工sql注入(进阶篇) sqlilabs靶场1-4题

1. 阅读&#xff0c;学习本章前&#xff0c;可以先去看看基础篇&#xff1a;1-手工sql注入(基础篇)-CSDN博客 2. 本章通过对sqlilabs靶场的实战&#xff0c;关于sqlilabs靶场的搭建&#xff1a;Linux搭建靶场-CSDN博客 3. 本章会使用到sqlmap&#xff0c;关于sqlmap的命令&…

2024五一数学建模C题煤矿深部开采冲击地压危险预测原创论文分享

大家好&#xff0c;从昨天肝到现在&#xff0c;终于完成了2024五一数学建模竞赛C题的完整论文啦。 实在精力有限&#xff0c;具体的讲解大家可以去讲解视频&#xff1a; 2024五一数学建模C题完整原创论文讲解&#xff0c;手把手保姆级教学&#xff01;_哔哩哔哩_bilibili 202…

003 redis分布式锁 jedis分布式锁 Redisson分布式锁 分段锁

文章目录 Redis分布式锁原理1.使用set的命令时&#xff0c;同时设置过期时间2.使用lua脚本&#xff0c;将加锁的命令放在lua脚本中原子性的执行 Jedis分布式锁实现pom.xmlRedisCommandLock.javaRedisCommandLockTest.java 锁过期问题1乐观锁方式&#xff0c;增加版本号(增加版本…

Python面试十问

一、深浅拷贝的区别&#xff1f; 浅拷⻉&#xff1a; 拷⻉的是对象的引⽤&#xff0c;如果原对象改变&#xff0c;相应的拷⻉对象也会发⽣改变。 深拷⻉&#xff1a; 拷⻉对象中的每个元素&#xff0c;拷⻉对象和原有对象不在有关系&#xff0c;两个是独⽴的对象。 浅拷⻉(c…

探索高级聚类技术:使用LLM进行客户细分

在数据科学领域&#xff0c;客户细分是理解和分析客户群体的重要步骤。最近&#xff0c;我发现了一个名为“Clustering with LLM”的GitHub仓库&#xff0c;它由Damian Gil Gonzalez创建&#xff0c;专门针对这一领域提供了一些先进的聚类技术。在这篇文章中&#xff0c;我将概…

【数据库主从架构】

【数据库主从架构】 1. 什么是数据库的主从架构1.1 主从复制1.1.1 MySQL的主从主从复制技术三级目录 1. 什么是数据库的主从架构 随着公司业务线的增多&#xff0c;各种数据都在迅速增加&#xff0c;并且数据的读取流量也大大增加&#xff0c;就面临着数据安全问题&#xff0c;…