面试:TCP、UDP如何解决丢包问题

文章目录

  • 一、TCP丢包原因、解决办法
    • 1.1 TCP为什么会丢包
    • 1.2 TCP传输协议如何解决丢包问题
    • 1.3 其他丢包情况(拓展)
    • 1.4 补充
      • 1.4.1 TCP端口号
      • 1.4.2 多个TCP请求的逻辑
      • 1.4.3 处理大量TCP连接请求的方法
      • 1.4.4 总结
  • 二、UDP丢包
    • 2.1 UDP协议
      • 2.1.1 UDP简介
      • 2.1.2 UDP协议特点
      • 2.1.3 基于UDP实现的用户层协议
      • 2.1.4 TCP与UDP的区别
    • 2.2 UDP丢包原因
    • 2.3 如何解决UDP丢包问题

一、TCP丢包原因、解决办法

TCP是基于不可靠的网络实现可靠的传输,肯定也会存在掉包的情况,如果通信中发现缺少数据或者丢包,那么,最大的可能在于程序发送的过程或者接收的过程出现问题。

例如服务端要给客户端发送大量数据,Send频率很高,那么就很有可能在Send环节出现错误(1.程序处理逻辑错误,2.多线程同步问题,3.缓冲区溢出等),如果没有对Send发送失败做处理,那么客户端收到的数据比理论要收到的数据少,就会造成丢数据,丢包现象。

1.1 TCP为什么会丢包

TCP协议(Transimission Control Protocol)是以一种面向连接的、可靠的、基于字节流的传输层通信协议。

TCP是基于不可靠的网路实现可靠传输,肯定会存在丢包问题。

如果在通信过程中,发现缺少数据或者丢包,那边么最大的可能性是程序发送过程或者接受过程中出现问题

例如:我有2台服务器 ,A和B服务器。A服务器发送数据给B服务器频率过高时,B服务器来不及处理,造成数据丢包。(原因可能是程序逻辑问题,多线程同步问题,缓冲区溢出问题)。

如果A服务器不对发送频率进行控制,或者数据进行重发的话,那么B服务器收到数据就会少。就会造成丢失数据

1.2 TCP传输协议如何解决丢包问题

为了保障传输可靠性,TCP协议本身有如下规定:

  1. 基于数据块传输/数据分片:应用数据被分割成TCP认为最适合发送的数据块,再传输给网络层,数据块被称为报文段或段。
  2. 对失序数据包重新排序以及去重:TCP为了保证不发生丢包,就给每个包一个序列号,有了序列号能够将接收到的数据根据序列号排序,并且去掉亚复序列号的数据就可以实现数据包去重。
  3. 校验和:TCP将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。
  4. 重传机制:在数据包丢失或延迟的情况下,重新发送数据包,直到收到对方的确认应答(ACK)。TCP重传机制主要有:基于计时器的重传(也就是超时重传)、快速重传(基于接收端的反馈信息来引发重传)、SACK(在快速重传的基础上,返回最近收到的报文段的序列号范围,这样客户端就知道,哪些数据包已经到达服务器了)、D-SACK(重复SACK,在SACK的基础上,额外携带信息,告知发送方有哪些数据包自己重复接收了)。关于重传机制的详细介绍,可以查看详解TCP超时与重传机制这篇文章。
  5. 流量控制(滑动窗口):TCP连接的每一方都有固定大小的缓冲空间,TCP的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP使用的流量控制协议是可变大小的滑动窗口协议(TCP利用滑动窗口实现流量控制)。
  6. 拥塞控制(慢开始、拥塞避免、快重传和快恢复):当网络拥塞时,减少数据的发送。TCP在发送数据的时候,需要考虑两个因素:一是接收方的接收能力,二是网络的拥塞程度。接收方的接收能力由滑动窗口表示,表示接收方还有多少缓冲区可以用来接收数据。网络的拥塞程度由拥塞窗口表示,它是发送方根据网络状况自己维护的一个值,表示发送方认为可以在网络中传输的数据量。发送方发送数据的大小是滑动窗口和拥塞窗口的最小值,这样可以保证发送方既不会超过接收方的接收能力,也不会造成网络的过度拥塞。
  7. 自主重传ARQ(停止等待ARQ、连续ARQ):接收端接收到分片数据时,根据分片数据序号向发送端发送一个确认,超时重传

关于TCP如何保障传输可靠性,可查阅 计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议

1.3 其他丢包情况(拓展)

按理说,TCP协议经过处理、已能保障传输可靠性,但是IP协议是不可靠、无连接的,以下情况仍有可能会丢包:

  • 服务端要给客户端发送大量数据时,Send频率很高,Send环节可能出现错误(程序处理逻辑错误、多线程同步问题、缓冲区溢出等)
  • 有大量TCP连接请求
  • 网络较差(譬如握手过程中丢包) :TCP 本身具有重传机制,但在极端情况下,丢包仍然可能发生

对应解决方案如下:

1、服务端要给客户端发送大量数据时,Send频率很高,Send环节可能出现错误(程序处理逻辑错误、多线程同步问题、缓冲区溢出等)

  • 对Send失败做处理

2、有大量TCP连接请求

  • 优化服务器配置、使用高效的 I/O 处理机制(多线程、多进程、事件驱动模型、异步IO)、负载均衡和合理管理连接,提高服务器的并发处理能力和稳定性
  • 具体见本文1.4.3小节

3、网络较差(譬如握手过程中丢包) :TCP 本身具有重传机制,但在极端情况下,丢包仍然可能发生

(1)调整TCP参数

  • 增加重传次数和超时时间:可以通过调整内核参数来增加 TCP 的重传次数和超时时间,以提高在网络不稳定情况下的可靠性
# 增加重传次数
sudo sysctl -w net.ipv4.tcp_retries2=15# 增加超时时间
sudo sysctl -w net.ipv4.tcp_fin_timeout=30
  • 调整拥塞控制算法:选择合适的拥塞控制算法可以改善网络性能。Linux 提供了多种拥塞控制算法,如 renocubicbbr
# 查看当前使用的拥塞控制算法
sysctl net.ipv4.tcp_congestion_control# 设置为 BBR( Bottleneck Bandwidth and RTT)
sudo sysctl -w net.ipv4.tcp_congestion_control=bbr

(2)使用TCP快速重传和恢复

  • 快速重传:快速重传允许发送方在接收到三个重复的 ACK 后立即重传丢失的段,而不是等待重传计时器到期
# 开启快速重传
sudo sysctl -w net.ipv4.tcp_frto=2
  • 快速恢复:快速恢复是在快速重传之后的一种机制,旨在更快地恢复连接

(3)使用TCP快速打开

TCP 快速打开(TCP Fast Open,简称 TFO)是一种优化 TCP 连接建立过程的技术。传统的 TCP 连接建立需要三次握手(SYN, SYN-ACK, ACK),而在某些情况下,这三次握手会导致额外的延迟。TCP 快速打开允许客户端在第一次 SYN 包中携带数据,从而减少了一次往返时间(RTT),提高了连接建立的速度。

TCP 快速打开的工作原理

  • 客户端发送 SYN 包:客户端在发送 SYN 包时,不仅包含 SYN 标志,还携带了数据。
  • 服务器响应 SYN-ACK 包:服务器在响应 SYN-ACK 包时,也包含对客户端数据的确认。
  • 客户端发送 ACK 包:客户端发送 ACK 包,同时可以继续发送更多数据。
  • 数据传输:连接建立完成,双方可以立即开始数据传输。

TCP 快速打开(TCP Fast Open)可以减少建立连接的时间,从而减少丢包的可能性。

# 开启 TCP 快速打开
sudo sysctl -w net.ipv4.tcp_fastopen=3

参数3的含义是:客户端和服务器都支持 TFO、客户端可以发送 TFO 请求、服务器可以接受 TFO 请求

(4)优化网络设备和驱动、调整网络设备参数

可以通过调整网络设备的参数来优化性能,例如增加接收缓冲区大小。

# 增加接收缓冲区大小
sudo ethtool -G eth0 rx 4096

(5)使用网络监控工具

使用网络监控工具(如 Wireshark、tcpdump)来监控和分析网络流量,及时发现和解决问题。

# 使用 tcpdump 抓包
sudo tcpdump -i eth0 -w capture.pcap

1.4 补充

TCP(传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP 端口是用于标识网络应用的逻辑地址。每个 TCP 连接由源 IP 地址、源端口号、目标 IP 地址和目标端口号唯一标识。

  • 端口号:是一个 16 位的数字,范围从 0 到 65535。其中,0-1023 是众所周知的系统端口,通常由系统进程使用;1024-49151 是注册端口,可以被用户进程使用;49152-65535 是动态或私有端口,通常由操作系统自动分配。

1.4.1 TCP端口号

TCP(传输控制协议)端口号是一个 16 位的数字,用于标识网络应用程序的逻辑地址。每个 TCP 连接由四个部分唯一标识:

  • 源 IP 地址
  • 源端口号
  • 目标 IP 地址
  • 目标端口号

端口号的范围是从 0 到 65535,其中:

  • 0-1023:熟知端口,通常由系统进程使用。
  • 1024-49151:注册端口,可以被用户进程使用。
  • 49152-65535:动态或私有端口,通常由操作系统自动分配。

1.4.2 多个TCP请求的逻辑

当有多个 TCP 请求时,这些请求并不一定都使用同一个端口。实际上,每个连接都有唯一的四元组(源 IP 地址、源端口号、目标 IP 地址、目标端口号)来区分。

1)服务器端口

服务器通常监听一个固定的端口,例如 HTTP 服务通常监听 80 端口,HTTPS 服务通常监听 443 端口。当客户端发起连接请求时,服务器的监听端口会接受连接请求,并为每个连接分配一个新的端口。

2)客户端端口

客户端发起连接时,操作系统会为每个连接分配一个临时端口(通常是动态端口,范围在 49152-65535 之间)。这个临时端口在连接期间是唯一的。

3)示例说明

假设有一个 Web 服务器监听 80 端口,两个客户端分别从不同的 IP 地址发起连接:

  • 客户端 A:IP 地址 192.168.1.1,操作系统为其分配临时端口 50000
  • 客户端 B:IP 地址 192.168.1.2,操作系统为其分配临时端口 50001

服务器接收到这两个连接请求后,会为每个连接分配一个新的端口:

  • 连接 1:(192.168.1.1:50000, 服务器 IP:80)
  • 连接 2:(192.168.1.2:50001, 服务器 IP:80)

尽管服务器监听的是同一个端口(80),但由于每个连接的四元组不同,服务器可以区分这些连接并同时处理它们。

1.4.3 处理大量TCP连接请求的方法

当有大量 TCP 连接请求时,服务器需要采取一些措施来有效地管理和处理这些连接,以保证系统的性能和稳定性。以下是一些常见的处理方法:

1. 使用高性能服务器

  • 多核处理器:使用多核处理器可以提高服务器的并发处理能力。
  • 高内存:增加服务器的内存容量,以支持更多的连接和更大的缓存。

2. 优化网络配置

  • 调整内核参数:优化 Linux 内核参数,如 net.core.somaxconn(最大监听队列长度)、net.ipv4.tcp_max_syn_backlog(SYN 队列长度)、net.ipv4.tcp_fin_timeout(FIN 超时时间)等。
  • 使用 TCP 快速打开:启用 TCP 快速打开(TCP Fast Open)可以减少建立连接的时间。

3. 使用连接池

  • 连接复用:使用连接池技术,复用已建立的连接,减少连接建立和断开的开销。
  • 连接池管理:合理管理连接池的大小,避免过多的空闲连接占用资源。

4. 服务器端优化

  • 多线程模型:使用多线程模型,每个线程处理一部分连接。

  • 多进程模型:每个连接由一个独立的进程处理。这种方法可以利用多核处理器的优势,但进程间的通信和资源管理较为复杂。

  • 事件驱动模型:使用事件驱动模型(如 epoll、kqueue),高效处理大量的 I/O 事件。这种方法可以高效地处理大量连接,适用于高并发场景

  • 异步 I/O框架:使用异步 I/O 模型,如 Node.js、Python 的 asyncio,可以在单个线程中处理多个连接,提高并发处理能力。

5. 负载均衡

  • 反向代理:使用反向代理服务器(如 Nginx、HAProxy)将请求分发到多个后端服务器,分散负载。
  • 集群:构建服务器集群,通过负载均衡算法将请求分发到不同的节点。

6. 限制连接速率

  • 限流:使用限流算法(如令牌桶、漏桶)限制客户端的连接速率,防止突发流量冲击。
  • 连接超时:设置合理的连接超时时间,及时关闭不活跃的连接。

7. 优化应用程序

  • 减少响应时间:优化应用程序的逻辑,减少每个请求的处理时间。
  • 缓存:使用缓存机制,减少对后端数据库的访问频率。
  • 异步处理:将耗时的操作异步处理,提高响应速度。

1.4.4 总结

  • TCP 端口号:用于标识网络应用程序的逻辑地址,每个连接由四元组(源 IP 地址、源端口号、目标 IP 地址、目标端口号)唯一标识。
  • 多个 TCP 请求:服务器监听一个固定端口,但每个连接都会分配一个唯一的四元组,因此可以同时处理多个连接。
  • 处理大量 TCP 连接请求:优化服务器配置、使用高效的 I/O 处理机制(多线程、多进程、事件驱动模型、异步IO)、负载均衡和合理管理连接,提高服务器的并发处理能力和稳定性
  • 其他丢包情况
    • 服务端要给客户端发送大量数据时,Send频率很高,Send环节可能出现错误(程序处理逻辑错误、多线程同步问题、缓冲区溢出等) ——对Send失败做处理
    • 有大量TCP连接请求 ——优化服务器配置、使用高效的 I/O 处理机制(多线程、多进程、事件驱动模型、异步IO)、负载均衡和合理管理连接,提高服务器的并发处理能力和稳定性
    • 网络较差(譬如握手过程中丢包) :TCP 本身具有重传机制,但在极端情况下,丢包仍然可能发生 ——调整TCP参数、使用TCP快速重传和恢复、使用TCP快速打开、优化网络设备和驱动、调整网络设备参数、使用网络监控工具

二、UDP丢包

2.1 UDP协议

2.1.1 UDP简介

  • UDP(User Datagram Protocol)是一种无连接的传输层协议,它提供了一种简单的、不可靠的数据传输服务。
  • UDP 提供了不面向连接的通信,且不对传送的数据报进行可靠的保证,适用于一次传送少量的数据,不适用于传输大量的数据。
  • UDP属于网络协议栈中的传输层协议,直接负责数据的传输和接收

2.1.2 UDP协议特点

  • 无连接:两台主机在使用UDP进行数据传输时,不需要建立连接,只需知道对端的IP和端口号即可把数据发送过去。
  • 不可靠:UDP协议没有确认重传机制,如果因为网络故障导致报文无法发到对方,或者对方收到了报文,但是传输过程中乱序了,对方校验失败后把乱序的包丢了,UDP协议层也不会给应用层任何错误反馈信息。(在网络中,“不可靠”是个中性词,因为可靠就意味着要付出更多的代价去维护可靠,实现起来会复杂很多;而“不可靠”的话,实现起来会更简单)
  • 面向数据报:UDP传输数据时,是以数据报文为单位一个个地发出去,然后一个个地接收的,这导致上面应用层无法灵活控制数据数据的读写次数和数量。

在这里插入图片描述

2.1.3 基于UDP实现的用户层协议

  • NFS:网络文件系统
  • TFTP:简单文件传输协议
  • DHCP:动态主机配置协议
  • BOOTP:启动协议(用于无盘设备启动)
  • DNS:域名解析协议

2.1.4 TCP与UDP的区别

TCPUDP
面向连接无连接
提供可靠服务不保证可靠交互
有状态无状态
面向字节流面向报文
传输效率较慢传输效率较快
有拥塞控制没有拥塞控制
每一条TCP连接只能是stron支持一对一、一对多、多对一、多对多
首部开销20字节首部开销8字节

2.2 UDP丢包原因

1、接收端处理时间过长导致丢包:

调用recv方法接收端收到数据后,处理数据花了一些时间,处理完后再次调用recv方法,在这二次调用间隔里,发过来的包可能丢失。对于这种情况可以修改接收端,将包接收后存入一个缓冲区,然后迅速返回继续recv。

2、发送的包巨大丢包:

虽然send方法会帮你做大包切割成小包发送的事情,但包太大也不行。例如超过50K的一个udp包,不切割直接通过send方法发送也会导致这个包丢失。这种情况需要切割成小包再逐个send。

3、发送的包较大,超过接受者缓存导致丢包:

包超过mtu size数倍,几个大的udp包可能会超过接收者的缓冲,导致丢包。这种情况可以设置socket接收缓冲。以前遇到过这种问题,我把接收缓冲设置成64K就解决了。

4、发送的包频率太快:

虽然每个包的大小都小于mtu size 但是频率太快,例如40多个mut size的包连续发送中间不sleep,也有可能导致丢包。这种情况也有时可以通过设置socket接收缓冲解决,但有时解决不了。所以在发送频率过快的时候还是考虑sleep一下吧。

5、局域网内不丢包,公网上丢包:

这个问题我也是通过切割小包并sleep发送解决的。如果流量太大,这个办法也不灵了。总之udp丢包总是会有的,如果出现了用我的方法解决不了,还有这个几个方法: 要么减小流量,要么换tcp协议传输,要么做丢包重传的工作。

2.3 如何解决UDP丢包问题

1.发送频率过高导致丢包

很多人会不理解发送速度过快为什么会产生丢包,原因就是UDP的SendTo不会造成线程阻塞,也就是说,UDP的SentTo不会像TCP中的SendTo那样,直到数据完全发送才会return回调用函数,它不保证当执行下一条语句时数据是否被发送(SendTo方法是异步的)。这样,如果要发送的数据过多或者过大,那么在缓冲区满的那个瞬间要发送的报文就很有可能被丢失。至于对“过快”的解释,作者这样说:“A few packets a second are not an issue; hundreds or thousands may be an issue.”(一秒钟几个数据包不算什么,但是一秒钟成百上千的数据包就不好办了)。

要解决接收方丢包的问题很简单,首先要保证程序执行后马上开始监听(如果数据包不确定什么时候发过来的话),其次,要在收到一个数据包后最短的时间内重新回到监听状态,其间要尽量避免复杂的操作(比较好的解决办法是使用多线程回调机制)。

2.报文过大丢包

至于报文过大的问题,可以通过控制报文大小来解决,使得每个报文的长度小于MTU。以太网的MTU通常是1500 bytes,其他一些诸如拨号连接的网络MTU值为1280 bytes,如果使用speaking这样很难得到MTU的网络,那么最好将报文长度控制在1280 bytes以下。

3.发送方丢包

发送方丢包:内部缓冲区(internal buffers)已满,并且发送速度过快(即发送两个报文之间的间隔过短); 接收方丢包:Socket未开始监听; 虽然UDP的报文长度最大可以达到64 kb,但是当报文过大时,稳定性会大大减弱。这是因为当报文过大时会被分割,使得每个分割块(翻译可能有误差,原文是fragmentation)的长度小于MTU,然后分别发送,并在接收方重新组合(reassemble),但是如果其中一个报文丢失,那么其他已收到的报文都无法返回给程序,也就无法得到完整的数据了。

面试:TCP/UDP如何解决丢包问题?、【网络】UDP协议

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/60109.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python的函数(补充浅拷贝和深拷贝)

一、定义 函数的定义:实现【特定功能】的代码块。 形参:函数定义时的参数,没有实际意义 实参:函数调用/使用时的参数,有实际意义 函数的作用: 简化代码提高代码重用性便于维护和修改提高代码的可扩展性…

Spring Boot框架的知识分类技术解析

2 开发技术 2.1 VUE框架 Vue.js(读音 /vjuː/, 类似于 view) 是一套构建用户界面的渐进式框架。 Vue 只关注视图层, 采用自底向上增量开发的设计。 Vue 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。 2.2 Mysql数据库 …

Hive详解

1 Hive基本概念 Hive是一个构建在Hadoop上的数据仓库框架。最初,Hive是由Facebook开发,后来移交由Apache软件基金会开发,并作为一个Apache开源项目。 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据…

llamaIndex和langchain对比及优劣对比

一. LangChain vs LlamaIndex: 基本描述 LlamaIndex在搜索和检索任务方面表现出色。它是一个强大的数据索引和查询工具,非常适合需要高级搜索的项目。LlamaIndex能够处理大型数据集,从而实现快速准确的信息检索。 LangChain是一个模块化和灵活的工具集框…

《重学Java设计模式》之 工厂方法模式

《重学Java设计模式》之 建造者模式 《重学Java设计模式》之 原型模式 《重学Java设计模式》之 单例模式 模拟发奖多种商品 工程结构 奖品发放接口 package com.yys.mes.design.factory.store;public interface ICommodity {/*** Author Sherry* Date 14:20 2024/11/6**/voi…

【C++笔记】string类的模拟实现

前言 各位读者朋友们大家好!上期我们讲解了string类的基础用法,这期我们来模拟实现一下string类。 目录 前言一. string类的构造函数1. 1 无参构造2.2 带参构造1.3 无参和带参构造结合1.4 拷贝构造1.5 c_str 二. string类的析构函数三. 字符串的遍历3.…

java中ArrayList的使用存储对象的易错点

ArrayList存储对象的易错点 上面这种写法是有逻辑问题的,因为只创建了一个Student对象,因此最后打印出来的结果是三个最后赋值的结果。 下面我们来形象看下存储关系 集合中存储的始终是第一个对象的地址,而每次输入新的名字和年龄&#xf…

栈和队列(Java)

一.栈(Stack) 1.定义 栈是限定仅在表尾进行插入或删除操作的线性表 一般的表尾称为栈顶 表头称为栈底 栈具有“后进先出”的特点 2.对栈的模拟 栈主要具有以下功能: push(Object item):将元素item压入栈顶。 pop()&am…

Angular 和 Vue2.0 对比

前言 :“业精于勤,荒于嬉;行成于思,毁于随” 很久没写博客了,大多记录少进一步探查。 Angular 和 Vue2.0 对比: 一.概念 1.1 Angular 框架: 是一款由谷歌开发的开源web前端框架(核…

基于Multisim数字电子秒表0-60S电路(含仿真和报告)

【全套资料.zip】数字电子秒表电路Multisim仿真设计数字电子技术 文章目录 功能一、Multisim仿真源文件二、原理文档报告资料下载【Multisim仿真报告讲解视频.zip】 功能 1.秒表最大计时值为60秒; 2. 2位数码管显示,分辨率为1秒; 3.具有清零…

安卓智能指针sp、wp、RefBase浅析

目录 前言一、RefBase1.1 引用计数机制1.2 设计目的1.3 主要方法1.4 如何使用1.5 小结 二、sp和wp2.1 引用计数机制2.2 设计目的2.3 主要方法2.3.1 sp2.3.2 wp 2.4 如何使用2.5 小结 四、参考链接 前言 安卓底层binder中,为什么 IInterface要继承自RefBase &#x…

【论文笔记】Prefix-Tuning: Optimizing Continuous Prompts for Generation

🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: Prefix-Tuning: Optimizin…

【Web前端】从回调到现代Promise与Async/Await

异步编程是一种让程序能够在等待某些操作完成的同时继续执行其他任务的关键技术,打破了传统编程中顺序执行代码的束缚。这种编程范式允许开发者构建出能够即时响应用户操作、高效处理网络请求和资源加载的应用程序。通过异步编程,JavaScript 能够在执行耗…

【CSS】“flex: 1“有什么用?

flex 属性的组成 flex 属性是一个复合属性,包含以下三个子属性: flex-grow:决定元素在容器中剩余空间的分配比例。默认值为 0,表示元素不会扩展。当设置为正数时,元素会按照设定比例扩展。flex-shrink:决…

计算机课程管理:Spring Boot与工程认证的协同创新

3系统分析 3.1可行性分析 通过对本基于工程教育认证的计算机课程管理平台实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本基于工程教育认证的计算机课程管理平…

【SpringBoot】18 上传文件到数据库(Thymeleaf + MySQL)

Git仓库 https://gitee.com/Lin_DH/system 介绍 使用 Thymeleaf 写的页面&#xff0c;将&#xff08;txt、jpg、png&#xff09;格式文件上传到 MySQL 数据库中。 依赖 pom.xml <!-- https://mvnrepository.com/artifact/com.mysql/mysql-connector-j --><depende…

Sharding运行模式、元数据、持久化详解

运行模式 单机模式 能够将数据源和规则等元数据信息持久化&#xff0c;但无法将元数据同步至多个Sharding实例&#xff0c;无法在集群环境中相互感知。 通过某一实例更新元数据之后&#xff0c;会导致其他实例由于获取不到最新的元数据而产生不一致的错误。 适用于工程师在本…

挖掘web程序中的OAuth漏洞:利用redirect_uri和state参数接管账户

本文探讨了攻击者如何利用OAuth漏洞&#xff0c;重点是滥用redirect_uri和state参数以接管用户账户。如果redirect_uri参数验证不严&#xff0c;可能会导致未经授权的重定向到恶意服务器&#xff0c;从而使攻击者能够捕获敏感信息。同样&#xff0c;state参数的错误实现可能使O…

Python世界:力扣题解1712,将数组分成三个子数组的方案数,中等

Python世界&#xff1a;力扣题解1712&#xff1a;将数组分成三个子数组的方案数&#xff0c;中等 任务背景思路分析代码实现测试套件本文小结 任务背景 问题来自力扣题目1712. Ways to Split Array Into Three Subarrays&#xff0c;大意如下&#xff1a; A split of an intege…

Java集合基础——针对实习面试

目录 Java集合基础什么是Java集合&#xff1f;说说List,Set,Queue,Map的区别&#xff1f;说说List?说说Set?说说Map&#xff1f;说说Queue?为什么要用集合&#xff1f;如何选用集合&#xff1f; Java集合基础 什么是Java集合&#xff1f; Java集合&#xff08;Java Collect…