基于双向长短期记忆网络(BiLSTM)的时间序列数据预测,15个输入1个输出,可以更改数据集,MATLAB代码

1. 数据收集与预处理

  • 数据清洗:处理缺失值、异常值等。
  • 特征工程:提取有助于预测的特征。
  • 数据标准化:将时间序列数据标准化,使其具有零均值和单位方差,有助于模型训练。
  • 滑动窗口划分:将时间序列数据划分为多个滑动窗口,每个窗口包含15个历史时间点的数据值,用于预测下一个时间点的值。
  • 数据集中部分数据如下:
0.491920000000000	0.493110000000000	0.493500000000000	0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000
0.493110000000000	0.493500000000000	0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000
0.493500000000000	0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000
0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000
0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000
0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000
0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000
0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000
0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000
0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000
0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000
0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000
0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000	0.561030000000000
0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000	0.561030000000000	0.561560000000000
0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000	0.561030000000000	0.561560000000000	0.560440000000000

2. 设计BiLSTM神经网络模型

使用MATLAB的深度学习工具箱,构建BiLSTM神经网络模型。需要指定模型的层数、每层神经元的数量、激活函数等超参数。
可以使用bilstmLayer来创建双向LSTM层,这是学习双向长期依赖关系的RNN层。
在这里插入图片描述

3. 编译模型

  • 选择损失函数:对于回归问题,通常使用均方误差(MSE)作为损失函数。
  • 选择优化器:常用的优化器包括Adam、SGD等。
  • 选择评估指标:常用的评估指标包括均方根误差(RMSE)。

4. 训练模型

  • 划分数据集:将数据集划分为训练集、验证集和测试集。
  • 模型训练:使用训练集数据训练模型,并在验证集上进行模型评估,以防止过拟合。
  • 超参数调优:调整模型的超参数,如学习率等,以获得更好的性能。

在这里插入图片描述

5. 模型评估与测试

  • 评估模型:在测试集上评估模型的性能,使用RMSE等指标。
  • 结果分析:分析模型预测结果与实际值之间的差异,评估模型的准确性和泛化能力。

在这里插入图片描述

在这里插入图片描述

6. 部分MATLAB示例

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')

7. 完整MATLAB代码见下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/58727.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VMware Workstation 17.0虚拟机安装Ubuntu Server 22.04.5 LTS并配置SSH与XFTP详细过程

文章目录 一、安装VMware虚拟机二、在虚拟机中安装Ubuntu1、下载镜像文件2、“创建新的虚拟机”操作过程3、首次进入虚拟机的初始化配置 三、连接SSH1、下载XShell软件2、使用XShell连接虚拟机服务器 四、连接XFTP1、下载XFTP软件2、使用XFTP连接虚拟机服务器 一、安装VMware虚…

【Linux】编辑器vim 与 编译器gcc/g++

目录 一、编辑器vim: 1、对vim初步理解: 2、vim的模式: 3、进入与退出: 4、vim命令模式下的指令集: 移动光标: 删除: cv: 撤销: 其他: 5、vim底行模…

【单峰序列】

题目 代码 #include <bits/stdc.h> using namespace std;const int mod 1000000007;//快速幂求2的x次方 long long f(int x) {long long ans 1;long long base 2;while (x) {if (x % 2 1) {ans (ans * base) % mod; }base (base * base) % mod;x / 2; }return an…

开源 AI 智能名片 2+1 链动模式 S2B2C 商城小程序与私域流量圈层

摘要&#xff1a;本文探讨了私域流量圈层的特点以及其在当今时代的重要性&#xff0c;分析了开源 AI 智能名片 21 链动模式 S2B2C 商城小程序源码在私域流量圈层构建中的作用&#xff0c;阐述了产品在圈层时代被标签化的现象&#xff0c;并以实例展示了如何利用该小程序源码打造…

Django+websocket实现一个简单聊天

WebSocket是一种在单个TCP连接上进行全双工通信的协议。它由IETF在2011年定为标准RFC 6455&#xff0c;并由RFC7936补充规范&#xff0c;同时WebSocket API也被W3C定为标准。 1、定义与原理 WebSocket是独立的、创建在TCP上的协议&#xff0c;它使用HTTP/1.1协议的101状态码进…

Unreal5从入门到精通之如何解决在VR项目在头显中卡顿的问题

前言 以前我们使用Unity开发VR,Unity提供了非常便利的插件和工具来做VR。但是由于Unity的渲染效果不如Unreal,现在我们改用Unreal来做VR了,所有的VR相关的配置和操作都要重新学习。 今天就来总结一下,我在开发VR过程中碰到的所有问题。 1.编辑器,以VR运行 默认运行方式…

Python毕业设计选题:基于django+vue的宠物寄养平台的设计与实现

开发语言&#xff1a;Python框架&#xff1a;djangoPython版本&#xff1a;python3.7.7数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat11开发软件&#xff1a;PyCharm 系统展示 1. 前台系统功能模块 系统首页界面 用户注册界面 用户登录界面 宠物商城界面 宠物店…

第三届北京国际水利科技博览会将于25年3月在国家会议中心召开

由中国农业节水和农村供水技术协会、北京水利学会、振威国际会展集团等单位联合主办的第三届北京国际水利科技博览会暨供水技术与设备展&#xff08;北京水利展&#xff09;将于2025年3月31日至4月2日在北京•国家会议中心举办&#xff01; 博览会以“新制造、新服务、新业态”…

使用web.dev提供的工具实现浏览器消息推送服务

文章目录 前言实现工具和效果实现原理实现过程前端接收用户订阅请求将用户订阅信息更新到后端后端实现接收并保存订阅信息的接口后端实现消息推送的逻辑前言 对于电商独立站来说,新品上架或者促销活动上线及时通知到用户是很重要的,通知的渠道有很多,其中就包括浏览器消息推…

掌握AI Prompt的艺术:如何有效引导智能助手

开头叙述&#xff1a; 在人工智能的世界里&#xff0c;Prompt&#xff08;提示&#xff09;是沟通人类意图与机器理解之间的桥梁。它不仅是一串简单的文字&#xff0c;而是一把钥匙&#xff0c;能够解锁AI模型的潜力&#xff0c;引导它们执行复杂的任务。本文将探讨Prompt的重…

深度学习优化器【学习率调整和梯度修正,Optimizer】

文章目录 一、学习率调整1 余弦退火&#xff08;1&#xff09;Warm up&#xff08;2&#xff09;Cosine Anneal 2 AdaGrad3 RMSprop算法4 AdaDelta算法 二、梯度估计修正1 动量法2 Nesterov加速梯度3 Adam修正的原因 4 AdamW 三、总结参考资料 在当今快速发展的人工智能领域&am…

运算符重载详解,日期类型的实现

一、运算符重载 当运算符被⽤于类类型的对象时&#xff0c;C语⾔允许我们通过运算符重载的形式指定新的含义。C规定类类型对象使⽤运算符时&#xff0c;必须转换成调⽤对应运算符重载&#xff0c;若没有对应的运算符重载&#xff0c;则会编译报错。 类中含有多种变量&#xff0…

什么是FUSE用户态文件系统

零. 文件系统 1. 为什么要有文件系统 文件系统是操作系统中管理文件和目录的一种机制。它提供了组织、存储、检索和更新文件的方法&#xff0c;主要如下&#xff1a; 数据组织&#xff1a;文件系统将数据组织成文件和目录&#xff0c;使用户能够更方便地管理和查找文件。每个…

HarmonyOS 5.0应用开发——音频播放组件的封装

【高心星出品】 文章目录 音频播放组件的封装开发步骤封装类代码测试代码 音频播放组件的封装 鸿蒙中提供了AVPlayer来实现音频播放的功能&#xff0c;播放的全流程包含&#xff1a;创建AVPlayer&#xff0c;设置播放资源&#xff0c;设置播放参数&#xff08;音量/倍速/焦点模…

KPRCB结构之ReadySummary和DispatcherReadyListHead

ReadySummary: Uint4B DispatcherReadyListHead : [32] _LIST_ENTRY 请参考 _KTHREAD *__fastcall KiSelectReadyThread(ULONG LowPriority, _KPRCB *Prcb)

【染色时间】

题目 代码 #include <bits/stdc.h> using namespace std; #define x first #define y second typedef pair<int,int> PII; const int N 510; int dx[] {0,0,-1,1}, dy[] {-1,1,0,0}; int d[N][N], w[N][N]; int n, m; void bfs() {memset(d, 0x3f, sizeof d);q…

Apache Dubbo (RPC框架)

本文参考官方文档&#xff1a;Apache Dubbo 1. Dubbo 简介与核心功能 Apache Dubbo 是一个高性能、轻量级的开源Java RPC框架&#xff0c;用于快速开发高性能的服务。它提供了服务的注册、发现、调用、监控等核心功能&#xff0c;以及负载均衡、流量控制、服务降级等高级功能。…

利用钉钉与金蝶云星空进行付款单自动化集成

钉钉数据集成到金蝶云星空&#xff1a;付款申请单下推生成付款单的技术实现 在企业日常运营中&#xff0c;数据的高效流转和准确处理是业务顺利进行的关键。本文将分享一个具体的系统对接集成案例&#xff1a;如何将钉钉平台上的付款申请单&#xff0c;通过轻易云数据集成平台…

前端八股文第七篇

61. React 中有对状态管理做进一步封装吗 在 React 中&#xff0c;除了可以使用原生的状态管理方式&#xff08;即使用组件的 state 属性&#xff09;外&#xff0c;还有一些第三方库对状态管理进行了进一步封装&#xff0c;以提供更强大和便捷的状态管理功能。其中最常见的是…

青少年编程能力等级测评CPA Python编程(一级)

青少年编程能力等级测评CPA Python编程(一级) &#xff08;考试时间90分钟&#xff0c;满分100分&#xff09; 一、单项选择题&#xff08;共20题&#xff0c;每题3.5分&#xff0c;共70分&#xff09; 下列语句的输出结果是&#xff08; &#xff09;。 print(35*2) A&a…