华为OD机试真题---生成哈夫曼树

华为OD机试中关于生成哈夫曼树的题目通常要求根据给定的叶子节点权值数组,构建一棵哈夫曼树,并按照某种遍历方式(如中序遍历)输出树中节点的权值序列。以下是对这道题目的详细解析和解答思路:

一、题目要求

给定一个长度为n的正整数数组,每个数字代表二叉树叶子节点的权值。要求生成一棵哈夫曼树,并将其按中序遍历的顺序输出。树中每个非叶子节点的权值等于其左右子节点权值之和。对于权值相同的两个节点,左子树的高度应小于等于右子树的高度。在满足上述条件的前提下,左子节点的权值应小于等于右子节点的权值。

二、哈夫曼树简介

哈夫曼树是一种带权最优二叉树,其特点是带权路径长度最短。所谓带权路径长度,是指树中所有叶子节点的权值乘上其到根节点的路径长度(若根节点为0层,则叶子节点到根节点的路径长度为叶子节点的层数)之和。

三、解题思路

  1. 构建森林:将每个叶子节点看作一棵独立的树,并将这些树放入一个优先队列(最小堆)中。优先队列用于每次选择权值最小的两个节点进行合并。
  2. 合并节点:从优先队列中取出权值最小的两个节点,将它们作为新树的左右子树,并计算新树的权值为两棵子树权值之和。然后,将新树加入优先队列中。
  3. 重复合并:重复上述步骤,直到优先队列中只剩下一棵树,这棵树即为所求的哈夫曼树。
  4. 中序遍历:对构建好的哈夫曼树进行中序遍历,得到节点权值序列,并按要求输出。

四、代码实现

import java.util.*;class HuffmanNode implements Comparable<HuffmanNode> {int weight;HuffmanNode left, right;HuffmanNode(int weight) {this.weight = weight;this.left = this.right = null;}@Overridepublic int compareTo(HuffmanNode other) {return this.weight - other.weight;}
}public class HuffmanTree {/*** 构建哈夫曼树* 哈夫曼树是一种带权路径长度最短的二叉树,也称为最优二叉树* 在数据压缩、编码等领域有广泛的应用** @param weights 每个节点的权重,权重越小的节点,在构建哈夫曼树时,越靠近根节点* @return 返回哈夫曼树的根节点*/public static HuffmanNode buildHuffmanTree(int[] weights) {// 优先队列,用于存储哈夫曼树的节点,队列头部元素权值最小PriorityQueue<HuffmanNode> pq = new PriorityQueue<>();// 遍历所有节点权重,初始化哈夫曼树节点并加入优先队列for (int weight : weights) {pq.add(new HuffmanNode(weight));}// 当优先队列中节点数量大于1时,循环构建哈夫曼树while (pq.size() > 1) {// 从优先队列中取出权值最小的两个节点HuffmanNode left = pq.poll();HuffmanNode right = pq.poll();// 断言right节点非空,确保树能正常构建assert right != null;// 创建新的哈夫曼节点,作为left和right节点的父节点,其权重为两个子节点权重之和HuffmanNode parent = new HuffmanNode(left.weight + right.weight);// 设置父节点的左右子节点parent.left = left;parent.right = right;// 将新的父节点加入优先队列pq.add(parent);}// 返回优先队列中剩余的唯一节点,即哈夫曼树的根节点return pq.poll();}/*** 中序遍历哈夫曼树* 中序遍历的特点是左子树-根节点-右子树的顺序访问树中的节点* 这种遍历顺序在哈夫曼树中主要用于验证树的结构,而不用于构建最短编码** @param root 哈夫曼树的根节点* @param result 用于存储遍历结果的列表,通常是节点的权重*/public static void inorderTraversal(HuffmanNode root, List<Integer> result) {// 判断当前节点是否为空,为空则直接返回if (root == null) {return;}// 递归中序遍历左子树inorderTraversal(root.left, result);// 将当前节点的权重添加到结果列表中result.add(root.weight);// 递归中序遍历右子树inorderTraversal(root.right, result);}/*** 主函数入口* 本程序用于演示霍夫曼树的构建及其遍历过程* 霍夫曼树是一种带权路径长度最短的二叉树,具有重要应用价值** @param args 命令行参数*/public static void main(String[] args) {// 创建Scanner对象,用于读取命令行输入Scanner scanner = new Scanner(System.in);// 读取霍夫曼树节点数量int n = scanner.nextInt();// 初始化霍夫曼树节点权重数组int[] weights = new int[n];// 读取每个节点的权重for (int i = 0; i < n; i++) {weights[i] = scanner.nextInt();}// 构建霍夫曼树并返回根节点HuffmanNode root = buildHuffmanTree(weights);// 初始化用于存储中序遍历结果的列表List<Integer> result = new ArrayList<>();// 中序遍历霍夫曼树,并将结果存储到列表中inorderTraversal(root, result);// 输出中序遍历结果for (int weight : result) {System.out.print(weight + " ");}}
}

五、代码解析

  1. HuffmanNode 类

    • HuffmanNode 是一个表示哈夫曼树节点的类。
    • 它包含三个属性:weight(节点权重),left(左子节点),right(右子节点)。
    • 实现了 Comparable<HuffmanNode> 接口,以便节点可以根据权重进行排序。
  2. HuffmanTree 类

    • 包含构建哈夫曼树的静态方法 buildHuffmanTree
    • 包含进行中序遍历的静态方法 inorderTraversal
    • main 方法用于读取输入、构建哈夫曼树、进行中序遍历并输出结果。
  3. main 方法

    • 读取节点数量 n 和每个节点的权重。
    • 调用 buildHuffmanTree 方法构建哈夫曼树。
    • 初始化结果列表 result 并调用 inorderTraversal 方法进行中序遍历。
    • 输出遍历结果。

六、运行实例解析

输入

5
5 15 40 30 10

步骤

  1. 读取输入

    • 节点数量 n = 5
    • 节点权重数组 weights = [5, 15, 40, 30, 10]
  2. 构建哈夫曼树

    • 初始化优先队列 pq 并添加所有节点。
    • 不断从 pq 中取出两个最小权重的节点,合并成一个新节点,并将新节点添加回 pq
    • 最终,pq 中剩下的唯一节点即为哈夫曼树的根节点。

    构建过程(可能的一种情况,因为合并顺序可能不同):

    • 初始:pq = [5, 10, 15, 30, 40]
    • 合并 510,得到新节点 15,加入 pqpq = [15, 15, 30, 40]
    • 合并两个 15,得到新节点 30,加入 pqpq = [30, 30, 40]
    • 合并 3030,得到新节点 60,加入 pqpq = [60, 40]
    • 合并 6040,得到根节点 100
  3. 中序遍历

    • 由于哈夫曼树不是二叉搜索树,中序遍历的结果取决于节点的合并顺序和树的结构。
    • 假设按上述构建过程,中序遍历结果可能是一种特定的节点权重顺序(注意,这不是唯一的)。
  4. 输出结果

    • 输出中序遍历得到的节点权重列表。

注意:由于哈夫曼树的构建过程中节点合并顺序可能不同(当存在相同权重的节点时),因此中序遍历的结果也可能不同。上述构建过程和中序遍历结果是基于一种假设的合并顺序。

七、实际输出

由于代码中的中序遍历会按照左子树-根节点-右子树的顺序访问节点,并且哈夫曼树的构建依赖于节点的合并顺序,因此实际输出将取决于具体的合并过程。要获得确切的输出,需要运行代码并观察结果。

如果您想要验证哈夫曼树的正确性,通常不会使用中序遍历,而是会检查每个节点的权重和从根到该节点的路径长度(用于计算哈夫曼编码的长度等)。中序遍历在这里主要用于演示和验证树的结构。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/56782.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python-库

python-库 常用库 仅个人笔记使用&#xff0c;感谢点赞关注 常用库 dill&#xff1a;对象序列化 目前仅专注于 NLP 大模型 机器学习和前后端的技术学习和分享 感谢大家的关注与支持&#xff01;

vue特效,一片动态星空

vue实现漂亮星空&#xff0c;超级简单 1.创建vue项目&#xff1a; vue create demo 2.注册vuecli : npm i element-ui -S 3.加载依赖 &#xff1a;npm i 4.运行项目 :npm run serve <!DOCTYPE html> <html lang"en"> <head><…

Linux SSH免密登录

生成密钥-默认 出现三个提示步骤,直接回车即可 看到下图的提示的时候,你已经生成密钥成功 ssh-keygen -t rsa 生成密钥-定制化 与默认的步骤一致,唯一不同的是命令,话不多说,上命令 ssh-keygen -t rsa -b 4096 -f ~/.ssh/id_rsa_new-t rsa&#xff1a;指定密钥类型为 RSA。…

FreeRTOS:任务通知

目录 一、简介 二、相关API 1.发送任务通知的API 2.获取任务通知的API 三、使用场景 1.代替消息队列 2.代替二值信号量 3.代替计数信号量 4.代替事件组 一、简介 FreeRTOS的任务通知&#xff08;Task Notifications&#xff09;是一个轻量级、快速的机制&#xff0c;用于…

【ELK】初始阶段

一、logstash学习 安装的时候最好不要有中文的安装路径 使用相对路径 在 Windows PowerShell 中&#xff0c;如果 logstash 可执行文件位于当前目录下&#xff0c;你需要使用相对路径来运行它。尝试输入以下命令&#xff1a; .\logstash -e ‘input { stdin { } } output { s…

详解23种设计模式——第一部分:概述+创建型模式

目录 1. 概述 2. 创建型模式 2.1 简单&#xff08;静态&#xff09;工厂模式 2.1.1 介绍 2.1.2 实现 2.2 工厂模式 2.3 抽象工厂模式 2.4 单例模式 2.4.1 饿汉模式 2.4.2 懒汉模式 2.4.3 线程安全的懒汉式 2.4.4 DCL单例 - 高性能的懒汉式 2.5 建造者模式 2.6 原…

kaptcha依赖maven无法拉取的问题

老依赖了&#xff0c;就是无法拉取&#xff0c;也不知道为什么&#xff0c;就是用maven一直拉去不成功&#xff0c;还以为是魔法的原因&#xff0c;试了好久发现不是&#xff0c;只好在百度寻求帮助了&#xff0c;好在寻找到了这位大佬的文章Maven - 解决无法安装 Kaptcha 依赖…

纯血鸿蒙!

纯血鸿蒙&#xff0c;这是哪个营销大师给起的名字啊&#xff01; 纯血&#xff01;象征着高贵、自信、自主、血性、英雄气概&#xff0c;都融入这纯血鸿蒙了&#xff01; 鸿蒙本就是开天辟地&#xff0c;加上纯血&#xff0c;真是荡气回肠&#xff01; 鸿蒙的推出背景 我们前…

Git安装与配置(2.47.0版本超详细)

一、背景 1.什么是gitt&#xff1f;&#xff08;官网引用&#xff09; Git 是一个快速、可扩展的分布式版本控制系统&#xff0c;它拥有异常丰富的命令集&#xff0c;可以提供高级操作和对内部的完全访问。 参阅 gittutorial[7] 开始使用&#xff0c;然后查看 giteveryday[7] …

ARM嵌入式学习--第四天

汇编与C混合编程 -汇编指令中调用C语言 .global _start _start:mov r0,#5mov r1,#3bl add stop:b stop int add(int a,int b) {int c a b;return c; } 无优化情况&#xff1a;&#xff08;反汇编之后&#xff0c;发现多了很多很多指令&#xff0c;运行之后结果是错误的&a…

MySQL-19.多表设计-一对多-外键

一.多表问题分析 二.添加外键 三.外键约束的问题

SpringCloud无介绍快使用,单机Eureka服务注册中心cloud-eureka-server7001搭建(十)

TOC 问题背景 从零开始学springcloud微服务项目 注意事项&#xff1a; 约定 > 配置 > 编码IDEA版本2021.1这个项目&#xff0c;我分了很多篇章&#xff0c;每篇文章一个操作步骤&#xff0c;目的是显得更简单明了controller调service&#xff0c;service调dao项目源码以及…

单位评职称需要在指定媒体上投稿发表文章看我如何轻松应对

在职场中,晋升与评职称是一项不可或缺的任务,而在这个过程中,完成相关的投稿更是至关重要。作为单位的一名员工,当我得知自己需要在指定的媒体上发表文章以满足职称评审要求时,心中既期待又忐忑。起初,我选择了传统的邮箱投稿方式,然而却没想到,这条路竟让我倍感挫折。 刚开始,…

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型

往期精彩内容&#xff1a; Python-凯斯西储大学&#xff08;CWRU&#xff09;轴承数据解读与分类处理 Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客 Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客 Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客 三十多个开源…

【Pycharm默认解释器配置文件】怎样删除配置解释器的无效历史记录?

有时候我们希望删除无效的解释器路径&#xff0c;可以找到这个文件&#xff0c;进行删除修改。 C:\Users\你的用户名\AppData\Roaming\JetBrains\PyCharm2022.3\options\jdk.table.xml直接删除解释器名称对应的一整个<jdk version"2">节点即可&#xff01; …

深度学习领域,你心目中 idea 最惊艳的论文是哪篇?

深度学习发展至今&#xff0c;共经历了三次浪潮&#xff0c;20 世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中&#xff0c;20 世纪 80 年代 到 90 年代深度学习表现为 联结主义(connectionism)&#xff0c;直到 2006 年&#xff0c;才真正以深度学习之名复兴。…

电气学习知识点

文章目录 NPN和PNP输出 NPN和PNP输出 NPN和PNP&#xff08;两种不同类型的三极管&#xff09;都是集电极输出。&#xff08;集电极开路输出&#xff09; 下图b:基极、c集电极、e发射极 NPN示意图&#xff08;集电极连接负载 — 正方形&#xff09; NPN的电流流向是从集电极…

电子物证的数字化时代:龙信科技引领取证技术革新

文章关键词&#xff1a;电子物证、手机取证、云取证、介质取证、电子数据取证 在信息技术飞速发展的今天&#xff0c;电子物证在司法领域扮演着越来越重要的角色。电子物证是指以存储于介质载体中的电磁记录或光电记录对案件事实起证明作用的电子信息数据及其附属物。与传统物…

《云计算网络技术与应用》实训6-1:配置KVM虚拟机使用NAT网络

任务1、计算节点基础环境准备 1. 使用VMware安装CentOS 7虚拟机&#xff0c;安装时记得开启CPU虚拟化&#xff0c;命名为“KVMC6”。 2. &#xff08;网卡配置和之前的一样&#xff0c;都用100网段&#xff09;网关设置为192.168.100.1&#xff0c;地址段为192.168.100.10-25…

LeetCode 3200.三角形的最大高度:枚举

【LetMeFly】3200.三角形的最大高度&#xff1a;枚举 力扣题目链接&#xff1a;https://leetcode.cn/problems/maximum-height-of-a-triangle/ 给你两个整数 red 和 blue&#xff0c;分别表示红色球和蓝色球的数量。你需要使用这些球来组成一个三角形&#xff0c;满足第 1 行…