人工智能和机器学习之线性代数(一)

人工智能和机器学习之线性代数(一)

人工智能和机器学习之线性代数一将介绍向量和矩阵的基础知识以及开源的机器学习框架PyTorch

文章目录

  • 人工智能和机器学习之线性代数(一)
    • 基本定义
      • 标量(Scalar)
      • 向量(Vector)
      • 矩阵(Matrix)
      • 数学符号表示
    • 使用 PyTorch 进行操作
      • 张量(Tensors)
      • 定义变量
      • 四则运算
      • Sigmoid运算
      • ReLU运算

基本定义

标量(Scalar)

标量是表示无方向的单个数值,仅仅表示程度或大小。在编程术语中,可以将标量视为包含单个数字的简单变量,例如整数或浮点数。标量的示例包括 温度(temperature)、年龄(age) 和 体重(weight)。

向量(Vector)

向量是标量的有序列表。之所以向量是有序的,因为标量在向量中的位置很重要。如下图所示 向量y表示电影《复仇者联盟:终局之战》Avengers: Endgame,向量中的每一个数字描述了影片的一个特定属性,其中action表示该电影属于动作类题材的占比为0.99,comedy表示属于喜剧题材的占比为0.52,drama表示属于戏剧题材的占比为0.45,horror表示属于恐怖题材的占比为0.10,romance表示属于浪漫题材的占比为0.26。

向量y
这部电影的动作值为 0.99,恐怖值为 0.10。这表明这部电影更像是一部动作片,而不是一部恐怖片。

向量y'
如果将 action 的值与 horor 的值交换,则该向量将不再准确表示电影《复仇者联盟:终局之战》,它不是恐怖电影。这就是顺序很重要的原因,即,改变顺序后变成另外一个向量。

向量总是以列或行的形式排列。以下是不同长度的行或列形式的向量。
行向量或列向量
注意,向量要么有一行,要么有一列。如果想要一个具有多行和多列的数学对象,该怎么办?这就是矩阵发挥作用的地方。

矩阵(Matrix)

如果标量是单个数字,向量是标量的一维有序列表,则矩阵是标量的二维数组。下面X 是一个示例矩阵(4行2列)。
矩阵X
每行对应于一个家庭的地址,即表示一个家庭。第一列表示家中卧室的数量,第二列表示浴室的数量。故矩阵X表示了多个家庭,以及每个家庭的特有属性。

二维矩阵也可以表示为向量的形式:

X = [ a ⃗ b ⃗ c ⃗ d ⃗ ] X=\begin{bmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{bmatrix} X= a b c d

向量a表示地址为123 Maple Grove Lane的家庭:
a ⃗ = [ 3 3 ] \vec{a} =\begin{bmatrix} 3\\ 3 \end{bmatrix} a =[33]
向量b表示地址为888 Ocean View Terrace的家庭:
b ⃗ = [ 4 3 ] \vec{b} =\begin{bmatrix} 4\\ 3 \end{bmatrix} b =[43]
向量c表示地址为100 Birch Street的家庭:
c ⃗ = [ 5 3 ] \vec{c} =\begin{bmatrix} 5\\ 3 \end{bmatrix} c =[53]
向量d表示地址为987 Sunflower Court的家庭:
d ⃗ = [ 5 4 ] \vec{d} =\begin{bmatrix} 5\\ 4 \end{bmatrix} d =[54]

数学符号表示

实数集合R是数学家对在日常生活中使用的所有数字的表示方式:实数数轴线上的所有整数(whole numbers)、负数(negative numbers,)、分数(fractions)、小数(decimal numbers)和无理数( irrational numbers)。
实数R
下面的x表示任意一个实数标量

x ∈ R x\in R xR

下面的表示任意一个m维的向量
[ x 0 x 1 ⋮ x m − 1 ] ∈ R m \begin{bmatrix} x_{0} \\ x_{1}\\ \vdots \\ x_{m-1} \end{bmatrix}\in R^{m} x0x1xm1 Rm
下面表示任意m x n矩阵
[ x 0 , 0 x 0 , 1 … x 0 , n − 1 x 1 , 0 x 1 , 1 … x 1 , n − 1 ⋮ ⋮ ⋮ ⋮ x m − 1 , 0 x m − 1 , 1 … x m − 1 , n − 1 ] ∈ R m × n \begin{bmatrix} x_{0,0} & x_{0,1} & \dots & x_{0,n-1} \\ x_{1,0} & x_{1,1} & \dots & x_{1,n-1}\\ \vdots & \vdots& \vdots& \vdots\\ x_{m-1,0}& x_{m-1,1} & \dots & x_{m-1,n-1} \end{bmatrix} \in R^{m\times n} x0,0x1,0xm1,0x0,1x1,1xm1,1x0,n1x1,n1xm1,n1 Rm×n

使用 PyTorch 进行操作

上面章节已经建立了向量和矩阵的定义及其数学符号,本节将在代码中简单尝试一下,加深一下印象。为此,将使用 PyTorch开源机器学习框架。PyTorch 在整个学术界和工业界广泛用于 OpenAIAmazonMetaSalesforce、斯坦福大学等机构和公司的尖端 AI 研究和生产级软件,以及数千家初创公司,因此积累该框架的经验将是实用的。请访问官方 PyTorch 安装说明页面以开始使用。

张量(Tensors)

向量具有1 维,矩阵具有2 个维度,那么涵盖 3 个或更多维度的通用术语是什么?答案:张量。实际上,向量和矩阵也是张量,因为张量是任何N 维数字数组。张量是 PyTorch 中的基本单位。使用 PyTorch 函数 torch.tensor(...) 创建向量和矩阵。

import torch
>>> a = torch.rand((3, 4, 2)) # Create a three
tensor([[[0.8856, 0.9232],    # dimensional tensor[0.0250, 0.2977],    # with random values[0.4745, 0.2243],[0.3107, 0.9159]],[[0.3654, 0.3746],[0.4026, 0.4557],[0.9426, 0.0865],[0.3805, 0.5034]],[[0.3843, 0.9903],[0.6279, 0.2222],[0.0693, 0.0140],[0.6222, 0.3590]]])
>>> a.shape
torch.Size([3, 4, 2]) # the tensor's dimensions

定义变量

定义向量a和矩阵m

import torch
a = torch.tensor([[3], [4], [5], [5]])
m = torch.tensor([[3,4], [5,6]])

a = [ 3 4 5 5 ] ∈ R 4 × 1 a=\begin{bmatrix} 3\\ 4\\ 5\\ 5 \end{bmatrix}\in R^{4\times 1} a= 3455 R4×1

m = [ 3 4 5 6 ] m=\begin{bmatrix} 3 & 4\\ 5 & 6 \end{bmatrix} m=[3546]

四则运算

简单的加减乘除四则运算
四则运算

>>> import torch
>>> a = torch.tensor([1.0, 2.0, 4.0, 8.0])
>>> b = torch.tensor([1.0, 0.5, 0.25, 0.125])
>>> a + b # element-wise addition
tensor([2.00, 2.50, 4.25, 8.125])
>>> a - b # element-wise subtraction
tensor([0.0, 1.5, 3.75, 7.8750])
>>> a * b # element-wise multiplication
tensor([1., 1., 1., 1.])
>>> a / b # element-wise division
tensor([ 1.,  4., 16., 64.])

Sigmoid运算

sigmoid(x) 函数将x压缩到范围(0,1), 请注意,只有具有任意较大的值并且希望将它们压缩为介于 0 和 1 之间的值范围时,这非常有用。有时将 sigmoid 的输出解释为概率很有用。

σ ( x ) = 1 1 + e − x \sigma \left ( x \right ) =\frac{1}{1+e^{-x} } σ(x)=1+ex1

sigma函数图像

sigmoid

>>> torch.sigmoid(a)
tensor([0.7311, 0.8808, 0.9820, 0.9997])
>> torch.sigmoid(torch.tensor(239))
tensor(1.)
>>> torch.sigmoid(torch.tensor(0))
tensor(0.5000)
>>> torch.sigmoid(torch.tensor(-0.34))
tensor(0.4158)

ReLU运算

ReLU 函数充当过滤器。任何正输入都保持不变,但任何负输入都变为零。

>>> c = torch.tensor([4, -4, 0, 2])
>>> torch.relu(c)
tensor([4, 0, 0, 2])

relu
relu函数图像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/56056.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【硬件模块】HC-08蓝牙模块

蓝牙模块型号 HC-08蓝牙模块实物图 HC-08蓝牙模块引脚介绍 STATE:状态输出引脚。未连接时,则为低电平。连接成功时,则为高电平。可以在程序中作指示引脚使用; RXD:串口接收引脚。接单片机的 TX 引脚(如…

大厂面试真题-说说AtomicInteger 线程安全原理

基础原子类(以 AtomicInteger 为例)主要通过 CAS 自旋 volatile 相结合的方案实现,既保障了 变量操作的线程安全性,又避免了 synchronized 重量级锁的高开销,使得 Java 程序的执行效率大为 提升。 CAS 用于保障变量…

Linux编辑器-vim的配置及其使用

vim是一种多模式的编辑器: 1.命令模式(默认模式):用户所有的输入都会当作命令,不会当作文本输入。 2.插入模式:写代码, 按「 i 」切换进入插入模式「 insert mode 」,按 “i” 进入…

04. prometheus 监控 Windows 服务器

prometheus 监控 Windows 服务器 1. 下载安装 Windows_exporter 安装包下载:https://github.com/prometheus-community/windows_exporter/releases 下载 msi 版本,上传至要监控的 Windows 服务器,双击安装即可,exporter 会自动…

SCI论文快速排版:word模板一键复制样式和格式【重制版】

关注B站可以观看更多实战教学视频:hallo128的个人空间SCI论文快速排版:word模板一键复制样式和格式:视频操作视频重置版2【推荐】 SCI论文快速排版:word模板一键复制样式和格式【重制版】 模板与普通文档的区别 为了让读者更好地…

npm 配置淘宝镜像

为了加速 npm 包的下载速度,尤其是在中国地区,配置淘宝的 npm 镜像(也称为 cnpm 镜像)是一个常见的方法。以下是如何配置淘宝 npm 镜像的步骤: 1. 使用 npm 命令配置镜像 你可以直接使用 npm 命令来设置淘宝的 npm 镜…

【C++贪心 DFS】2673. 使二叉树所有路径值相等的最小代价|1917

本文涉及知识点 C贪心 反证法 决策包容性 CDFS LeetCode2673. 使二叉树所有路径值相等的最小代价 给你一个整数 n 表示一棵 满二叉树 里面节点的数目,节点编号从 1 到 n 。根节点编号为 1 ,树中每个非叶子节点 i 都有两个孩子,分别是左孩子…

苹果最新论文:LLM只是复杂的模式匹配 而不是真正的逻辑推理

大语言模型真的可以推理吗?LLM 都是“参数匹配大师”?苹果研究员质疑 LLM 推理能力,称其“不堪一击”!苹果的研究员 Mehrdad Farajtabar 等人最近发表了一篇论文,对大型语言模型 (LLM) 的推理能…

【Coroutines】Implement Lua Coroutine by Kotlin - 2

Last Chapter Link 文章目录 Symmetric CoroutinesNon-Symmetric Coroutine SampleSymmetric Coroutine SampleHow to Implement Symmetric CoroutinesWonderful TricksCode DesignTail Recursion OptimizationFull Sources Symmetric Coroutines in last blog, we have talk…

linux中软连接和硬链接的区别

定义与概念 硬链接(Hard Link):硬链接是文件系统中的一个概念,它直接指向文件系统中的物理数据块。可以把硬链接看作是原始文件的一个别名,它们共享相同的inode(索引节点)编号。在Linux文件系统…

【数据结构笔记】搜索树

目录 二叉搜索树 结构特征 搜索 插入 删除 单子节点删除 双子节点删除 平衡二叉搜索树 AVL树 失衡与重平衡 插入失衡 删除失衡 “34”平衡重构 伸展树 逐层伸展 双层伸展 插入 删除 红黑树 结构特征 插入 自底向上的染色插入 双红修正 RR-1 RR-2 自顶…

超GPT3.5性能,无限长文本,超强RAG三件套,MiniCPM3-4B模型分享

MiniCPM3-4B是由面壁智能与清华大学自然语言处理实验室合作开发的一款高性能端侧AI模型,它是MiniCPM系列的第三代产品,具有4亿参数量。 MiniCPM3-4B模型在性能上超过了Phi-3.5-mini-Instruct和GPT-3.5-Turbo-0125,并且与多款70亿至90亿参数的…

R语言绘制三维散点图

之前我们绘制的属于二维散点图,具有两个维度通常是 x 轴和 y 轴)上展示数据点的分布。只能呈现两个变量之间的关系。而三维散点图则具有三个维度(x 轴、y 轴和 z 轴)上展示数据点的分布。可以同时呈现三个变量之间的关系&#xff…

RabbitMQ 入门(四)SpringAMQP五种消息类型

一、WorkQueue(工作消息队列) Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息。 当消息处理比较耗时的时候,可能生产消息的速度会远远大于…

Python自然语言处理之pyltp模块介绍、安装与常见操作案例

pyltp是哈尔滨工业大学社会计算与信息检索研究中心推出的一款基于Python封装的自然语言处理工具,它提供了哈工大LTP(Language Technology Platform)工具包的接口。LTP工具包以其强大的中文分词、词性标注、命名实体识别、依存句法分析等功能&…

Vue——Uniapp回到顶部悬浮按钮

代码示例 <template><view class"updata" click"handleup" :style"{bottom: bottomTypepx}" ><i class"iconfont icon-huidaodingbu"></i></view> </template><script> export default {n…

《机器学习与数据挖掘综合实践》实训课程教学解决方案

一、引言 随着信息技术的飞速发展&#xff0c;人工智能已成为推动社会进步的重要力量。作为人工智能的核心技术之一&#xff0c;机器学习与数据挖掘在各行各业的应用日益广泛。本方案旨在通过系统的理论教学、丰富的实践案例和先进的实训平台&#xff0c;帮助学生掌握机器学习…

Qt中的连接类型

Qt中的连接类型 Qt 框架提供了多种连接类型&#xff0c;用于在信号和槽之间建立连接时指定调用的方式。以下是主要的连接类型及其区别&#xff1a; Qt::AutoConnection: 默认连接类型。如果信号和槽在同一个线程中&#xff0c;则使用直接连接&#xff08;Qt::DirectConnectio…

C++ 比大小

//输入两个可能有前导 0 的大整数&#xff0c;a,b请输出他们谁大谁小#include <iostream> #include <string> #include <string.h> using namespace std; #define M 100005 int main() {char a[M], b[M];char *pa, *pb;pa a;pb b;cin >> a >> …

第十五届蓝桥杯C/C++学B组(解)

1.握手问题 解题思路一 数学方法 50个人互相握手 &#xff08;491&#xff09;*49/2 &#xff0c;减去7个人没有互相握手&#xff08;61&#xff09;*6/2 答案&#xff1a;1024 解题思路二 思路&#xff1a; 模拟 将50个人从1到50标号&#xff0c;对于每两个人之间只握一…