时间序列数据可视化

#时间序列可视化
#离散数据的时间序列可视化
import numpy as np
import pandas as pdts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot()
#%%
#连续数据的时间序列可视化
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
plt.figure()
df.plot()
plt.legend(loc='best')
#%%
#连续型图表
#阶梯图
import numpy as np
import matplotlib.pyplot as pltx = np.arange(14)
y = np.sin(x / 2)plt.figure(figsize=(12,5))
plt.subplot(121)
plt.step(x, y + 2, label='pre (default)')
plt.plot(x, y + 2, 'o--', color='grey', alpha=0.3)plt.step(x, y + 1, where='mid', label='mid')
plt.plot(x, y + 1, 'o--', color='grey', alpha=0.3)plt.step(x, y, where='post', label='post')
plt.plot(x, y, 'o--', color='grey', alpha=0.3)plt.grid(axis='x', color='0.95')
plt.legend(title='Parameter where:')
plt.title('plt.step(where=...)')plt.subplot(122)
plt.plot(x, y + 2, drawstyle='steps', label='steps (=steps-pre)')
plt.plot(x, y + 2, 'o--', color='grey', alpha=0.3)plt.plot(x, y + 1, drawstyle='steps-mid', label='steps-mid')
plt.plot(x, y + 1, 'o--', color='grey', alpha=0.3)plt.plot(x, y, drawstyle='steps-post', label='steps-post')
plt.plot(x, y, 'o--', color='grey', alpha=0.3)plt.grid(axis='x', color='0.95')
plt.legend(title='Parameter drawstyle:')
plt.title('plt.plot(drawstyle=...)')
plt.show()
#%%
#折线图
df2.plot(kind='line')
#%%
#拟合曲线
'''
Author: CloudSir
Date: 2021-08-03 15:01:17
LastEditTime: 2021-08-03 15:26:05
LastEditors: CloudSir
Description: Python拟合任意函数
https://github.com/cloudsir
'''
# 引用库函数import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize as opplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号# 需要拟合的函数
def f_1(x, A, B, C):return A * x**2 + B * x + C# 需要拟合的数据组
x_group = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y_group = [2.83, 9.53, 14.52, 21.57, 38.26, 53.92, 73.15, 101.56, 129.54, 169.75, 207.59]# 得到返回的A,B值
A, B, C = op.curve_fit(f_1, x_group, y_group)[0]# 数据点与原先的进行画图比较
plt.scatter(x_group, y_group, marker='o',label='真实值')
x = np.arange(0, 15, 0.01)
y = A * x**2 + B *x + C
plt.plot(x, y,color='red',label='拟合曲线')
plt.legend() # 显示labelplt.show()#%%
#螺旋图
import turtle
n = 500
# turtle.left(60)s
turtle.penup()
turtle.goto(-450,150)
turtle.pendown()
turtle.pencolor("blue")
for i in range(1,1000,1):if i < 500:n = n - 1turtle.speed(100)turtle.fd(n)turtle.right(140)else:n+=1turtle.speed(100)turtle.pencolor('red')turtle.fd(n)turtle.right(114)
turtle.done()
#%%
from turtle import *speed(0)  # 最快的画笔速度# 画圆脸
setup(600, 600, 0, 0)
penup()
fd(-200)
pendown()
color('yellow', 'yellow')
begin_fill()
seth(-90)
circle(200)
end_fill()# 画嘴巴
penup()
seth(0)
fd(10)
pendown()
pensize(3)  # 调整画笔大小
color('red')
seth(-90)
circle(190, 180)# 画眼睛
penup()
fd(100)
seth(180)
fd(573)
for i in range(2):  # 给画两只眼睛制造相同代码,才可以使用for循环,绘制两只眼睛penup()seth(0)fd(200)pendown()pensize(2)seth(20)color('black', 'white')begin_fill()circle(-230, 40)circle(-10, 180)circle(210, 40)circle(-10, 180)end_fill()color('black', 'black')begin_fill()circle(-10)end_fill()#%%
#热图
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pddf = pd.DataFrame(np.random.randn(10, 5))plt.figure(figsize=(10, 8))# 设置字体
sns.set(font_scale=1.2)
plt.rc('font',family=['Times New Roman', 'SimSun'], size=12)
plt.subplots_adjust()
ax = sns.heatmap(df.corr(), annot=True, fmt=".2f")
ax.set_title('相关性热力图')  # 图标题
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
figure = ax.get_figure()
# figure.savefig('sns_heatmap.jpg', bbox_inches='tight')
#%%
#离散型
#柱形图
df3.plot(kind='bar')
#%%
#散点图
df3.plot(kind='scatter', x='a', y='b')
#%%
#堆叠柱形图
df3.plot(kind='bar', stacked=True)
#%%
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 生成数据
theta = np.linspace(0, 2 * np.pi, 100)
z = np.linspace(-1, 1, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)# 创建图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制花瓶图
ax.plot(x, y, z, label='花瓶图')
ax.legend()plt.show()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54653.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu下使用 python搭建服务实现从web端远程配置设备网口

1、通过文件配置Ubuntu设备网口 在Ubuntu工控机上&#xff0c;通过文件配置网口&#xff08;网络接口&#xff09;可以让网络配置在每次系统启动时自动生效。以下是常见的方法步骤&#xff1a; 1.1 使用 netplan 配置网口&#xff08;Ubuntu 18.04 及以上版本&#xff09; 编…

Vue学习记录之六(组件实战及BEM框架了解)

一、BEM BEM是一种前端开发中常用的命名约定&#xff0c;主要用于CSS和HTML的结构化和模块化。BEM是Block、Element、Modifier的缩写。 Block&#xff08;块&#xff09;&#xff1a;独立的功能性页面组件&#xff0c;可以是一个简单的按钮&#xff0c;一个复杂的导航条&…

【Python 数据分析学习】Matplotlib 的基础和应用

题目 1 Matplotlib 主要特性2 Matplotlib 基础知识2.1 导入模块2.2 图形构成2.2.1 图形&#xff08;Figure&#xff09;2.2.2 轴 &#xff08;Axes&#xff09;2.2.3 轴线&#xff08;axis&#xff09; 2.5 中文设置2.5.1 借助rcParams修改字体实现设置2.5.2 增加一个fontprope…

基于PHP+MySQL组合开发地方门户分类信息网站源码系统 带完整的安装代码包以及搭建部署教程

系统概述 随着互联网技术的飞速发展&#xff0c;地方门户分类信息网站逐渐成为城市生活不可或缺的一部分。它们涵盖了房产、招聘、二手交易、生活服务等多个领域&#xff0c;为当地居民提供了全方位的信息服务。为了满足这一市场需求&#xff0c;我们开发了这款基于PHPMySQL的…

uniapp监听滚动实现顶部透明度变化

效果如图&#xff1a; 实现思路&#xff1a; 1、使用onPageScroll监听页面滚动&#xff0c;改变导航条的透明度&#xff1b; 2、关于顶部图片的高度&#xff1a; 如果是小程序&#xff1a;使用getMenuButtonBoundingClientRect获取胶囊顶部距离和胶囊高度&#xff1b; 如果…

如何利用 Kafka,实时挖掘企业数据的价值?

首先&#xff0c;问读者老爷们一个简单的问题&#xff0c;如果你需要为你的数据选择一个同时具备高吞吐 、数据持久化、可扩展的数据传递系统&#xff0c;你会选择什么样的工具或架构呢&#xff1f; 答案非常显而易见&#xff0c;那就是 Kafka&#xff0c;不妨再次套用一个被反…

使用Java基于GeoTools读取Shapefile矢量数据属性信息-以某市POI数据为例

前言 在之前的博客中&#xff0c;我们讲过在GDAL中如何读取空间数据的属性和数据信息&#xff0c;也简单的讲过如何在GeoTools中读取Shapefile文件的属性信息和数据信息。对于空间矢量数据库&#xff0c;就像我们传统的二维数据库的表字段和表数据的关系&#xff0c;在研究表数…

14 vue3之内置组件trastion全系列

前置知识 Vue 提供了 transition 的封装组件&#xff0c;在下列情形中&#xff0c;可以给任何元素和组件添加进入/离开过渡: 条件渲染 (使用 v-if)条件展示 (使用 v-show)动态组件组件根节点 自定义 transition 过度效果&#xff0c;你需要对transition组件的name属性自定义。…

jupyter安装与使用——Ubuntu服务器

jupyter安装与使用——Ubuntu服务器 一、安装miniconda3/anaconda31. 下载miniconda32. 安装miniconda33. 切换到bin文件夹4. 输入pwd获取路径5. 打开用户环境编辑页面6. 重新加载用户环境变量7. 初始化conda8.验证是否安装成功9.conda配置 二、安装jupyter2.1 conda安装2.2 配…

国货之光|暴雨携信创新品亮相第八届丝博会

9月20日&#xff0c;第八届丝绸之路国际博览会暨中国东西部合作与投资贸易洽谈会&#xff08;以下简称“丝博会”&#xff09;在西安举行。 本届丝博会以“深化互联互通拓展经贸合作”为主题&#xff0c;会期为9月20日至24日&#xff0c;在西安国际会展中心设置国际交流展、省际…

研一奖学金计划2024/9/23有感

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、需要认真上课的1.应用数理统计&#xff08;开卷考试&#xff09;2.最优化方法&#xff08;开卷考试&#xff09;3.跨文化交际&#xff08;主题演讲20课堂讨…

[系统设计总结] - Proximity Service算法介绍

问题描述 Proximity Service广泛应用于各种地图相关的服务中比如外卖&#xff0c;大众点评&#xff0c;Uber打车&#xff0c;Google地图中&#xff0c;其中比较关键的是我们根据用户的位置来快速找到附近的餐厅&#xff0c;司机&#xff0c;外卖员也就是就近查询算法。 主流的…

小程序面板开发教程|开发照明 Matter 面板步骤(一)

一. 前置知识 前言 出于对 Matter 标准协议及第三方设备接入的可拓展性等方面考虑&#xff0c;照明 Matter 模型面板的功能点定义会与照明的 DP 模型有所不同&#xff0c;因此本文会着重介绍照明 Matter 面板的功能点定义及与 DP 模型的区别&#xff0c;以方便面板小程序开发…

Qt-QLabel 添加图片并设置 GIF 图动态效果

Qt-QLabel 添加图片并设置 GIF 图动态效果 一、添加图片资源并设置图片 选择标签&#xff0c;拖拉到界面上&#xff0c;然后选择器属性 picmap   选择设置&#xff0c;在这里添加图片资源   点击左边的加号符号按钮添加前缀&#xff0c;并设置前缀名&#xff0c;如果已经…

uniapp+renderJS+google map开发安卓版APP非小程序

背景需求 需要在uniapp中接入google地图,研究了一番,都没有找到合适的,现在说一下教程。 效果图 前期工作 这两点缺一不可,否则你啥也看不到。 1、电脑安装L-O-U梯 用于访问G-OO-G-LE的API或者创建google map key。 2、手机安装L-O-U梯 用于显示google地图。我就是手…

数据篇| 关于Selenium反爬杂谈

友情提示:本章节只做相关技术讨论, 爬虫触犯法律责任与作者无关。 LLM虽然如火如荼进行着, 但是没有数据支撑, 都是纸上谈兵, 人工智能的三辆马车:算法-数据-算力,缺一不可。之前写过关于LLM微调文章《微调入门篇:大模型微调的理论学习》、《微调实操一: 增量预训练(Pretrai…

USB 电缆中的信号线 DP、DM 的缩写由来

经常在一些芯片的规格书中看到 USB 的信号对是以 DP 和 DM 命名&#xff1a; 我在想&#xff0c;这些规格书是不是写错了&#xff0c;把 N 写成 M 了&#xff1f;DM 中的 M 到底是什么的缩写&#xff1f; 于是我找了一些资料&#xff0c;终于在《Universal Serial Bus Cables …

xilinx hbm ip运用

AXI-HBM是一个集成的IP核&#xff0c;该核提供高达16个AXI3从PORT的HBM接口&#xff0c;每个使用他自己的独立的时钟。HBM2 GEN存储器也支持&#xff0c;HBM相对传统DDR的方案&#xff0c;带宽得到极大的提高 特征 AXI3从端口存储器接口 -16个独立的256bit存储器接口 -可选的…

Why Is Prompt Tuning for Vision-Language Models Robust to Noisy Labels?

文章汇总 本文的作者针对了提示学习的结构设计进行了分析&#xff0c;发现了一些规律&#xff1a; 1)固定的类名令牌为模型的优化提供了强正则化&#xff0c;减少了由噪声样本引起的梯度。 2)从多样化和通用的web数据中学习到的强大的预训练图像文本嵌入为图像分类提供了强大…

FreeRTOS学习——接口宏portmacro.h

FreeRTOS学习——接口宏portmacro.h&#xff0c;仅用于记录自己阅读与学习源码 FreeRTOS Kernel V10.5.1 portmacro版本&#xff1a;GCC/ARM_CM7 portmacro.h是什么 portmacro.h头文件&#xff0c;用于定义与特定硬件平台相关的数据类型和常量。 在移植过程中&#xff0c;…