深度学习实战:UNet模型的训练与测试详解

🍑个人主页:Jupiter.
🚀 所属专栏:Linux从入门到进阶
欢迎大家点赞收藏评论😊

在这里插入图片描述

在这里插入图片描述

目录

    • 1、云实例:配置选型与启动
      • 1.1 登录注册
      • 1.2 配置 SSH 密钥对
      • 1.3 创建实例
      • 1.4 登录云实例
    • 2、云存储:数据集上传与下载
    • 3、云开发:眼底血管分割案例
      • 3.1 案例背景
      • 3.2 网络搭建
      • 3.3 网络训练
      • 3.4 模型测试


1、云实例:配置选型与启动

1.1 登录注册

首先进入登录界面注册并登录账号

在这里插入图片描述

1.2 配置 SSH 密钥对

配置 SSH 密钥对的作用是后续远程登录服务器不需要密码验证,更加方便。

首先创建本地公钥,进入本地.ssh目录输入ssh-keygen -o命令,这里文件名可以设置为id_dsa,也可以是其他任意名字
在这里插入图片描述
之后我们可以在.ssh目录看到刚刚创建的两个文件

id_dsa id_dsa.pub
其中id_dsa.pub就是需要的公钥文件

进入密钥对配置,创建密钥对,将id_dsa.pub的内容复制到这里就可以

1.3 创建实例

进入GPU 云实例,点击创建实例。如下图所示,按需选择需要的 GPU 型号和镜像
在这里插入图片描述
在这里插入图片描述

1.4 登录云实例

等待实例创建完成后,点击复制“访问链接”。

在这里插入图片描述
接着来到任意一个 SSH 连接终端进行云实例登录,我这里选择的是 VSCode,如下所示
在这里插入图片描述
成功后,输入:

nvidia-smi
torch.cuda.is_available()

简单验证一下功能即可,如下所示即为成功
在这里插入图片描述

2、云存储:数据集上传与下载

文件存储为网络共享存储,可挂载至的不同实例中。相比本地数据盘,其优势是实例间共享,可以多点读写,不受实例释放的影响;此外存储后端有多冗余副本,数据可靠性非常高;但缺陷是 IO 性能一般

考虑到以上优劣,推荐使用方式:将重要数据或代码存放于文件存储中,所有实例共享,便利的同时数据可靠性也有保障;在训练时,需要高 IO 性能的数据(如训练数据),先拷贝到实例本地数据盘,从本地盘读数据获得更好的 IO 性能。如此兼顾便利、安全和性能。

接下来,我们将训练数据上传到云实例数据盘中。使用scp工具如下

scp -rP 35740 ./DRIVE-SEG-DATA root@cn-north-b.ssh.damodel.com:/root/workspace

具体地:

35740与cn-north-b.ssh.damodel.com分别为端口号和远程地址,请参考 1.4 节替换为自己的参数
./DRIVE-SEG-DATA是本地数据集路径
/root/workspace是远程实例数据集路径

在这里插入图片描述
数据的下载也是类似的命令

scp -rP 35740 root@cn-north-b.ssh.damodel.com:/root/workspace ./DRIVE-SEG-DATA

本文提到的数据集可以在DRIVE 数据集中下载:链接:https://drive.grand-challenge.org/Download/

3、云开发:眼底血管分割案例

3.1 案例背景

眼底也称为眼球的内膜,包括黄斑、视网膜和视网膜中央动静脉等结构。在临床医学中,眼底图像是眼科医生对眼疾病患者进行诊断的重要依据。随着深度学习的发展,医学影像分割技术产生了深远的变化,尤其是卷积神经网络 AlexNet、VGGNet、GoogLeNet、ResNet 等,能够学习到更加抽象和高级的特征表示,从而实现更加精确的分割结果。深度学习模型在大规模数据上训练后,通常能够获得更好的泛化能力,即对未见过的数据也能做出相对准确的预测。对于医学影像分割来说,这意味着模型可以更好地适应不同类型和来源的医学图像数据,提高了分割结果的可靠性和稳定性。同时,深度学习技术支持端到端的学习方式,即从原始输入数据直接学习到最终的分割结果,无需手工设计复杂的特征提取和预处理流程。这简化了分割算法的开发流程,提高了效率和准确性。此外,医学影像数据常常包含多种模态,如 CT、MRI 等。深度学习技术能够更好地处理多模态数据,实现不同模态之间的信息融合,从而提高了医学影像分割的准确性和全面性

在这里插入图片描述
本次实践,我们采用 UNet 进行眼底血管医学图像分割任务。UNet 是一种被广泛应用于语义分割任务的网络结构,其编码器-解码器结构以及跳跃连接的设计,使其能够有效地捕获图像中不同尺度的特征信息,从而在眼底血管分割任务中取得较好的效果。同时,在推理阶段,UNet 采用全卷积网络结构,能够快速对新的眼底图像进行血管分割,为临床应用提供了实时性支持。

3.2 网络搭建

选用 U-Net 网络结构作为基础分割模型的原因在于其通过编解码器架构,有效地结合局部信息和全局信息,提高分割准确性;同时,U-Net 的跳跃连接结构有助于保留和恢复图像中的细节和边缘信息,且在小样本情况下表现优异,能够充分利用有限数据进行有效训练,广泛应用于医学图像分割任务中。网络架构如下

class UNet(nn.Module):def __init__(self, n_channels, n_classes, bilinear=True):super(UNet, self).__init__()self.n_channels = n_channelsself.n_classes = n_classesself.bilinear = bilinearself.inc = DoubleConv(n_channels, 64)self.down1 = Down(64, 128)self.down2 = Down(128, 256)self.down3 = Down(256, 512)self.down4 = Down(512, 512)self.up1 = Up(1024, 256, bilinear)self.up2 = Up(512, 128, bilinear)self.up3 = Up(256, 64, bilinear)self.up4 = Up(128, 64, bilinear)self.outc = OutConv(64, n_classes)def forward(self, x):x1 = self.inc(x)x2 = self.down1(x1)x3 = self.down2(x2)x4 = self.down3(x3)x5 = self.down4(x4)x = self.up1(x5, x4)x = self.up2(x, x3)x = self.up3(x, x2)x = self.up4(x, x1)logits = self.outc(x)return logits

3.3 网络训练

基于 PyTorch 的神经网络训练流程可以分为以下步骤(不考虑前期数据准备和模型结构):

定义损失函数 根据任务类型选择合适的损失函数(loss function),如分类任务常用的交叉熵损失(Cross-Entropy Loss)或回归任务中的均方误差(Mean Square Error)。

选择优化器 选择合适的优化器(optimizer),如随机梯度下降(SGD)、Adam 或 RMSprop,并设置初始学习率及其它优化参数。

训练模型 在训练过程中,通过迭代训练数据集来调整模型参数。每个迭代周期称为一个 epoch。对于每个 epoch,数据会被分成多个 batch,每个 batch 被输入到模型中进行前向传播、计算损失、反向传播更新梯度,并最终优化模型参数。

保存模型 当满足需求时,可以将训练好的模型保存下来,以便后续部署和使用。

根据这个步骤编写以下代码

def train_net(net, device, data_path, epochs=40, batch_size=1, lr=0.00001):dataset = Dateset_Loader(data_path)per_epoch_num = len(dataset) / batch_sizetrain_loader = torch.utils.data.DataLoader(dataset=dataset,batch_size=batch_size,shuffle=True)optimizer = optim.Adam(net.parameters(),lr=lr,betas=(0.9, 0.999),eps=1e-08, weight_decay=1e-08,amsgrad=False)criterion = nn.BCEWithLogitsLoss()best_loss = float('inf')loss_record = []with tqdm(total=epochs*per_epoch_num) as pbar:for epoch in range(epochs):net.train()for image, label in train_loader:optimizer.zero_grad()image = image.to(device=device, dtype=torch.float32)label = label.to(device=device, dtype=torch.float32)pred = net(image)loss = criterion(pred, label)pbar.set_description("Processing Epoch: {} Loss: {}".format(epoch+1, loss))if loss < best_loss:best_loss = losstorch.save(net.state_dict(), 'best_model.pth')loss.backward()optimizer.step()pbar.update(1)loss_record.append(loss.item())plt.figure()plt.plot([i+1 for i in range(0, len(loss_record))], loss_record)plt.title('Training Loss')plt.xlabel('Epoch')plt.ylabel('Loss')plt.savefig('/root/shared-storage/results/training_loss.png')

运行这个脚本,可以在终端看到进度

在这里插入图片描述
训练损失函数如下,可以看到已经收敛

在这里插入图片描述

3.4 模型测试

测试逻辑如下所示,主要是计算 IoU 指标

def cal_miou(test_dir="/root/workspace/DRIVE-SEG-DATA/Test_Images",pred_dir="/root/workspace/DRIVE-SEG-DATA/results", gt_dir="/root/workspace/DRIVE-SEG-DATA/Test_Labels",model_path='best_model_drive.pth'):name_classes = ["background", "vein"]num_classes = len(name_classes)if not os.path.exists(pred_dir):os.makedirs(pred_dir)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')net = UNet(n_channels=1, n_classes=1)net.to(device=device)net.load_state_dict(torch.load(model_path, map_location=device))net.eval()img_names = os.listdir(test_dir)image_ids = [image_name.split(".")[0] for image_name in img_names]time.sleep(1)for image_id in tqdm(image_ids):image_path = os.path.join(test_dir, image_id + ".png")img = cv2.imread(image_path)origin_shape = img.shapeimg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)img = cv2.resize(img, (512, 512))img = img.reshape(1, 1, img.shape[0], img.shape[1])img_tensor = torch.from_numpy(img)img_tensor = img_tensor.to(device=device, dtype=torch.float32)pred = net(img_tensor)pred = np.array(pred.data.cpu()[0])[0]pred[pred >= 0.5] = 255pred[pred < 0.5] = 0pred = cv2.resize(pred, (origin_shape[1], origin_shape[0]), interpolation=cv2.INTER_NEAREST)cv2.imwrite(os.path.join(pred_dir, image_id + ".png"), pred)hist, IoUs, PA_Recall, Precision = compute_mIoU_gray(gt_dir, pred_dir, image_ids, num_classes, name_classes)miou_out_path = "/root/shared-storage/results/"show_results(miou_out_path, hist, IoUs, PA_Recall, Precision, name_classes)

模型保存的时候保存到共享存储路径/root/shared-storage,其他实例可以直接从共享存储中获取训练后的模型
在这里插入图片描述
在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54611.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【鸿蒙】HarmonyOS NEXT开发快速入门教程之ArkTS语法装饰器(上)

系列文章目录 【鸿蒙】HarmonyOS NEXT开发快速入门教程之ArkTS语法装饰器&#xff08;上&#xff09; 【鸿蒙】HarmonyOS NEXT开发快速入门教程之ArkTS语法装饰器&#xff08;下&#xff09; 文章目录 系列文章目录前言一、ArkTS基本介绍1、 ArkTS组成2、组件参数和属性2.1、区…

YOLOV8 OpenCV + usb 相机 实时识别

1 OpenCV 读相机 import cv2cap cv2.VideoCapture(0) while (1):# get a frameret, frame cap.read()# show a framecv2.imshow("capture", frame)if cv2.waitKey(1) & 0xFF ord(q):# cv2.imwrite("/opt/code/image/fangjian2.jpeg", frame)#passb…

Linux基础知识-1

Linux和Windows最大差异:目录。在Windows中&#xff0c;磁盘是被分成了很多区的&#xff0c;比如C盘&#xff0c;D盘&#xff0c;不同的文件放在不同的盘下面。下图为Windows的磁盘管理&#xff0c;可以看到磁盘0被划分为了不同的区域&#xff0c;C盘&#xff0c;D盘等&#xf…

[深度学习]Pytorch框架

1 深度学习简介 应用领域:语音交互、文本处理、计算机视觉、深度学习、人机交互、知识图谱、分析处理、问题求解2 发展历史 1956年人工智能元年2016年国内开始关注深度学习2017年出现Transformer框架2018年Bert和GPT出现2022年,chatGPT出现,进入AIGC发展阶段3 PyTorch框架简…

2024 年 CSS 终于增加了垂直居中特性,效率翻倍!

在 2024 年的Chrome 123 版本中&#xff0c; CSS 原生可以使用 1 个 CSS 属性 align-content: center进行垂直居中。 有何魅力&#xff1f; 这个特性的魅力在哪儿呢&#xff1f;我举例给你看一下 <div style"align-content:center; height:200px; background: #614e…

计算机网络:物理层 --- 基本概念、编码与调制

目录 一. 物理层的基本概念 二. 数据通信系统的模型 三. 编码 3.1 基本概念 3.2 不归零制编码 3.3 归零制编码 3.4 曼切斯特编码 3.5 差分曼切斯特编码 ​编辑 四. 调制 4.1 调幅 4.2 调频 4.3 调相 4.4 混合调制 今天我们讲的是物理…

影刀RPA实战:网页爬虫之携程酒店数据

1.实战目标 大家对于携程并不陌生&#xff0c;我们出行定机票&#xff0c;住酒店&#xff0c;去旅游胜地游玩&#xff0c;都离不开这样一个综合性的网站为我们提供信息&#xff0c;同时&#xff0c;如果你也是做旅游的公司&#xff0c;那携程就是一个业界竞争对手&#xff0c;…

[Spring]Spring MVC 请求和响应及用到的注解

文章目录 一. Maven二. SpringBoot三. Spring MVC四. MVC注解1. RequestMapping2. RequestParam3. PathVariable4. RequestPart5. CookieValue6. SessionAttribute7. RequestHeader8. RestController9. ResponseBody 五. 请求六. 响应 一. Maven Maven是⼀个项⽬管理⼯具。基于…

Python | Leetcode Python题解之第421题数组中两个数的最大异或值

题目&#xff1a; 题解&#xff1a; class Trie:def __init__(self):# 左子树指向表示 0 的子节点self.left None# 右子树指向表示 1 的子节点self.right Noneclass Solution:def findMaximumXOR(self, nums: List[int]) -> int:# 字典树的根节点root Trie()# 最高位的二…

Java基础知识扫盲

目录 Arrays.sort的底层实现 BigDecimal(double)和BigDecimal(String)有什么区别 Char可以存储一个汉字吗 Java中的Timer定时调度任务是咋实现的 Java中的序列化机制是咋实现的 Java中的注解是干嘛的 Arrays.sort的底层实现 Arrays.sort是Java中提供的对数组进行排序的…

LabVIEW编程能力如何能突飞猛进

要想让LabVIEW编程能力实现突飞猛进&#xff0c;需要采取系统化的学习方法&#xff0c;并结合实际项目进行不断的实践。以下是一些提高LabVIEW编程能力的关键策略&#xff1a; 1. 扎实掌握基础 LabVIEW的编程本质与其他编程语言不同&#xff0c;它是基于图形化的编程方式&…

使用 UWA Gears 定位游戏内存问题

UWA Gears 是UWA最新发布的无SDK性能分析工具。针对移动平台&#xff0c;提供了实时监测和截帧分析功能&#xff0c;帮助您精准定位性能热点&#xff0c;提升应用的整体表现。 内存不足、内存泄漏和过度使用等问题&#xff0c;常常导致游戏出现卡顿、崩溃&#xff0c;甚至影响…

CSS | 如何来避免 FOUC(无样式内容闪烁)现象的发生?

一、什么是 FOUC(无样式内容闪烁)? ‌FOUC&#xff08;Flash of Unstyled Content&#xff09;是指网页在加载过程中&#xff0c;由于CSS样式加载延迟或加载顺序不当&#xff0c;导致页面出现闪烁或呈现出未样式化的内容的现象。‌ 这种现象通常发生在HTML文档已经加载&…

Redis数据结构之哈希表

这里的哈希表说的是value的类型是哈希表 一.相关命令 1.hset key field value 一次可以设置多个 返回值是设置成功的个数 注意&#xff0c;哈希表中的键值对&#xff0c;键是唯一的而值可以重复 所以有下面的结果&#xff1a; key中原来已经有了f1&#xff0c;所以再使用hse…

RTSP学习

RTSP基本原理 实时流传输协议(RTSP:RealTimeStreaming Protocol1)是一种网络传输协议,旨在发送低延迟流。 该协议由RealNetworks,Netscape和哥伦比亚大学的专家在1996年开发。它定义了应如何打包流中的数据以进行传输。 类似一个控制命令的协议play teardown 负责音视频的数据…

二叉树(Java)

一.1.树形结构概念的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。它具有以下的特点&#xff1a;…

大模型培训讲师叶梓:Llama Factory 微调模型实战分享提纲

LLaMA-Factory ——一个高效、易用的大模型训练与微调平台。它支持多种预训练模型&#xff0c;并且提供了丰富的训练算法&#xff0c;包括增量预训练、多模态指令监督微调、奖励模型训练等。 LLaMA-Factory的优势在于其简单易用的界面和强大的功能。用户可以在不编写任何代码的…

【速成Redis】03 Redis 五大高级数据结构介绍及其常用命令 | 消息队列、地理空间、HyperLogLog、BitMap、BitField

前言&#xff1a; 上篇博客我们讲到redis五大基本数据类型&#xff08;也是就下图的第一列&#xff09;。 【速成Redis】02 Redis 五大基本数据类型常用命令-CSDN博客文章浏览阅读1k次&#xff0c;点赞24次&#xff0c;收藏10次。该篇适用于速成redis。本篇我们将讲解&#…

Leetcode 2246. 相邻字符不同的最长路径(一般树)树形dp C++实现

问题&#xff1a;Leetcode 2246. 相邻字符不同的最长路径 给你一棵 树&#xff08;即一个连通、无向、无环图&#xff09;&#xff0c;根节点是节点 0 &#xff0c;这棵树由编号从 0 到 n - 1 的 n 个节点组成。用下标从 0 开始、长度为 n 的数组 parent 来表示这棵树&#x…