深度学习:(六)激活函数的选择与介绍

激活函数

之前使用的 a = σ ( z ) a=\sigma(z) a=σ(z) ,其中 σ ( ) \sigma(~) σ( ) 便是激活函数。

在神经网络中,不同层的激活函数可以不同。

在学习中,一般以 g ( z ) g(z) g(z) 来表示激活函数。

为什么需要(线性)激活函数?

不需要激活函数就等同于使用线性激活函数 g ( z ) = z g(z)=z g(z)=z (恒等激活函数),那么使用单个样本下的双层网络代码就为:
G i v e n i n p u t x : a [ 0 ] = x z [ 1 ] = W [ 1 ] a [ 0 ] + b [ 1 ] a [ 1 ] = z [ 1 ] z [ 2 ] = W [ 2 ] a [ 1 ] + b [ 2 ] a [ 2 ] = z [ 2 ] \begin{align*} &Given~~input~~x:\\ &~~~~~~~~a^{[0]}=x\\ &~~~~~~~~z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}\\ &~~~~~~~~a^{[1]}=z^{[1]}\\ &~~~~~~~~z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}\\ &~~~~~~~~a^{[2]}=z^{[2]} \end{align*} Given  input  x:        a[0]=x        z[1]=W[1]a[0]+b[1]        a[1]=z[1]        z[2]=W[2]a[1]+b[2]        a[2]=z[2]
将最后的结果展开,则 a [ 2 ] = z [ 2 ] = W [ 2 ] ( W [ 1 ] a [ 0 ] + b [ 1 ] ) + b [ 2 ] = ( W [ 2 ] W [ 1 ] ) a [ 0 ] + W [ 2 ] b [ 1 ] + b [ 2 ] a^{[2]}=z^{[2]}=W^{[2]}(W^{[1]}a^{[0]}+b^{[1]})+b^{[2]}=(W^{[2]}W^{[1]})a^{[0]}+W^{[2]}b^{[1]}+b^{[2]} a[2]=z[2]=W[2](W[1]a[0]+b[1])+b[2]=(W[2]W[1])a[0]+W[2]b[1]+b[2] ,其中 W [ 2 ] W [ 1 ] W^{[2]}W^{[1]} W[2]W[1] 可以看作 W ′ W^{'} W W [ 2 ] b [ 1 ] + b [ 2 ] W^{[2]}b^{[1]}+b^{[2]} W[2]b[1]+b[2] 可以看作 b ′ b^{'} b ,最终可等效为 a [ 2 ] = W ′ a [ 0 ] + b ′ a^{[2]}=W^{'}a^{[0]}+b^{'} a[2]=Wa[0]+b

这说明,如果没有激活函数,或者是其他线性激活函数,那么无论层数多深,总会存在与之等效的单层神经网络,那么深度学习的意义就没有了,就变成了单纯的逻辑回归了。

特例

针对回归问题,输出层可以使用线性激活函数,而隐藏层依旧不可以。

sigma函数

g ( z ) = σ ( z ) g(z)=\sigma(z) g(z)=σ(z)

公式: a = σ ( z ) = 1 1 + e − z a=\sigma(z)=\frac{1}{1+e^{-z}} a=σ(z)=1+ez1

函数图像:
在这里插入图片描述

梯度/斜率/导数:
g ′ ( z ) = d d z g ( z ) = 1 1 + e − z ( 1 − 1 1 + e − z ) = g ( z ) [ 1 − g ( z ) ] \begin{align*} g^{'}(z)=\frac{d}{dz}g(z)&=\frac{1}{1+e^{-z}}(1-\frac{1}{1+e^{-z}})\\ &=g(z)[1-g(z)] \end{align*} g(z)=dzdg(z)=1+ez1(11+ez1)=g(z)[1g(z)]
导数图像:
在这里插入图片描述

使用:在**二元分类**问题上(输出层的结果为0~1),输出层的激活函数可以使用sigma函数。

禁用:在非二元分类问题上,禁用,即使是二元分类问题,隐藏层中也不能用。

缺点: z z z 非常大或者非常小时, σ ( z ) \sigma(z) σ(z) 函数的梯度(斜率)会很小,会形成梯度消失问题,从而拖慢梯度下降算法。

双曲正切函数

g ( z ) = t a n h ( z ) g(z)=tanh(z) g(z)=tanh(z)

公式: a = t a n h ( z ) = e z − e − z e z + e − z a=tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}} a=tanh(z)=ez+ezezez

函数图像:
在这里插入图片描述

优点:可达到“数据中心化”的效果,即数据平均值接近 0 0 0

缺点:① 二元分类问题上(输出层的结果为0~1),输出层不能用。

​ ② z z z 非常大或者非常小时, t a n h ( z ) tanh(z) tanh(z) 函数的梯度(斜率)会很小,会形成梯度消失问题,从而拖慢梯度下降算法。

梯度/斜率/导数:
g ′ ( z ) = d d z g ( z ) = 1 − g 2 ( z ) \begin{align*} g^{'}(z)=\frac{d}{dz}g(z)=1-g^{2}(z) \end{align*} g(z)=dzdg(z)=1g2(z)
导数图像:
在这里插入图片描述

线性修正单元(ReLU)

g ( z ) = R e L U ( z ) g(z)=ReLU(z) g(z)=ReLU(z)

现在已经变成隐层激活函数的默认选择了。

公式: a = R e L U ( z ) = m a x { 0 , z } a=ReLU(z)=max\{0,z\} a=ReLU(z)=max{0,z}

函数图像:
在这里插入图片描述

P.S.: z = 0 z=0 z=0 这一点的导数不存在,但在编程中,刚好 z = 0 z=0 z=0 的概率非常之低,所以不用担心。或者自己可以给 z = 0 z=0 z=0 点的导数赋值。

**注意:**ReLU并不是线性激活函数,其导数并不是在全域都为恒定值。

梯度/斜率/导数:
g ′ ( z ) = { 0 , if  z < 0 1 , if  z ≥ 0 \begin{align*} g^{'}(z)=\begin{cases} 0, & \text {if $z<0$}\\ 1, & \text {if $z≥0$}\\ \end{cases} \end{align*} g(z)={0,1,if z<0if z0
z = 0 z=0 z=0 处的导数,可以人为定义成 1 1 1 0 0 0

导数图像:
在这里插入图片描述

带泄露ReLU(Leaky ReLU)

g ( z ) = L e a k y R e L U ( z ) g(z)=Leaky~ReLU(z) g(z)=Leaky ReLU(z)

公式: a = L e a k y R e L U ( z ) = m a x { b ⋅ z , z } a=Leaky~ReLU(z)=max\{b·z,z\} a=Leaky ReLU(z)=max{bz,z} b b b 可以取 0.01 0.01 0.01

函数图像:
在这里插入图片描述

梯度/斜率/导数:
g ′ ( z ) = { 0.01 , if  z < 0 1 , if  z ≥ 0 \begin{align*} g^{'}(z)=\begin{cases} 0.01, & \text {if $z<0$}\\ 1, & \text {if $z≥0$}\\ \end{cases} \end{align*} g(z)={0.01,1,if z<0if z0
z = 0 z=0 z=0 处的导数,可以人为定义成 1 1 1 0.01 0.01 0.01

导数图像:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54461.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8s容器运行时,移除Dockershim后存在哪些疑惑?

K8s容器运行时&#xff0c;移除Dockershim后存在哪些疑惑&#xff1f; 大家好&#xff0c;我是秋意零。 K8s版本截止目前&#xff08;24/09&#xff09;已经发布到了1.31.x版本。早在K8s版本从1.24.x起&#xff08;22/05&#xff09;&#xff0c;默认的容器运行时就不再是Doc…

算法之搜索--最长公共子序列LCS

最长公共子序列&#xff08;longest common sequence&#xff09;:可以不连续 最长公共子串&#xff08;longest common substring&#xff09;&#xff1a;连续 demo for (int i 1;i<lena;i){for (int j 1;j<lenb;j){if(a[i-1]b[j-1]){dp[i][j]dp[i-1][j-1]1;}el…

Qt (17)【Qt 文件操作 读写保存】

阅读导航 引言一、Qt文件概述二、输入输出设备类三、文件读写类四、文件和目录信息类五、自定义“记事本” 引言 在上一篇文章中&#xff0c;我们学习了Qt的事件处理机制&#xff0c;知道了如何响应用户的操作。但应用程序常常还需要处理文件&#xff0c;比如读写数据。所以&a…

python爬虫初体验(一)

文章目录 1. 什么是爬虫&#xff1f;2. 为什么选择 Python&#xff1f;3. 爬虫小案例3.1 安装python3.2 安装依赖3.3 requests请求设置3.4 完整代码 4. 总结 1. 什么是爬虫&#xff1f; 爬虫&#xff08;Web Scraping&#xff09;是一种从网站自动提取数据的技术。简单来说&am…

指针修仙之实现qsort

文章目录 回调函数什么是回调函数回调函数的作用 库函数qsort使用qsort函数排序整形使用qsort函数排序结构体 qsort函数模拟实现说明源码and说明 回调函数 什么是回调函数 回调函数就是⼀个通过函数指针调⽤的函数。 如果你把函数的指针&#xff08;地址&#xff09;作为参数…

Sigmoid引发的梯度消失爆炸及ReLU引起的神经元参数失效问题思考

Sigmoid和ReLU激活函数思考&#xff09; 引文Sigmoid函数梯度消失问题梯度爆炸问题解决方案 ReLU函数简化模型示例场景设定前向传播对反向传播的影响总结 内容精简版 引文 梯度消失和梯度爆炸是神经网络训练中常见的两个问题&#xff0c;特别是在使用Sigmoid激活函数时。这些问…

后端-navicat查找语句(单表与多表)

表格字段设置如图 语句&#xff1a; 1.输出 1.输出name和age列 SELECT name,age from student 1.2.全部输出 select * from student 2.where子语句 1.运算符&#xff1a; 等于 >大于 >大于等于 <小于 <小于等于 ! <>不等于 select * from stude…

torch模型量化方法总结

0.概述 模型训练完成后的参数为float或double类型,而装机(比如车载)后推理预测时,通常都会预先定点(量化)为int类型参数,相应的推理的精度会有少量下降,但不构成明显性能下降,带来的结果是板端部署的可能性,推理的latency明显降低,本文对torch常用的量化方法进行总…

JavaEE: 创造无限连接——网络编程中的套接字

文章目录 Socket套接字TCP和UDP的区别有连接/无连接可靠传输/不可靠传输面向字节流/面向数据报全双工/半双工 UDP/TCP api的使用UDPDatagramSocketDatagramPacketInetSocketAddress练习 TCPServerSocketSocket练习 Socket套接字 Socket是计算机网络中的一种通信机制&#xff0…

【VLM小白指北 (1) 】An Introduction to Vision-Language Modeling

开一个新坑Vision-Language Modeling (VLM) &#xff0c;原文76页&#xff0c;慢慢更&#xff0c;for beginners&#xff0c;但也不能之前啥都不会啊。 原文链接&#xff1a;An Introduction to Vision-Language Modeling Introduction 存在的问题&#xff1a;将语言与视觉相…

ChatGPT 在国内使用的方法

AI如今很强大&#xff0c;聊聊天、写论文、搞翻译、写代码、写文案、审合同等等&#xff0c;ChatGPT 真是无所不能~ 作为一款出色的大语言模型&#xff0c;ChatGPT 实现了人类般的对话交流&#xff0c;最主要是能根据上下文进行互动。 接下来&#xff0c;我将介绍 ChatGPT 在国…

xhs 小红书 x-s web 分析

声明: 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 有相关问题请第一时间头像私信联系我…

《深度学习》PyTorch框架 优化器、激活函数讲解

目录 一、深度学习核心框架的选择 1、TensorFlow 1&#xff09;概念 2&#xff09;优缺点 2、PyTorch 1&#xff09;概念 2&#xff09;优缺点 3、Keras 1&#xff09;概念 2&#xff09;优缺点 4、Caffe 1&#xff09;概念 2&#xff09;优缺点 二、pytorch安装 1、安装 2、…

Linux操作系统:GCC(GNU Compiler Collection)编译器

在 Linux 系统中&#xff0c;gcc&#xff08;GNU Compiler Collection&#xff09;是一个非常强大的编译器&#xff0c;主要用于编译 C 语言程序。 除了基本的编译和链接命令外&#xff0c;gcc还提供了许多选项和功能。 以下是一些常用的 gcc命令及其功能&#xff1a; 1. 基本…

Python | Leetcode Python题解之第420题强密码检验器

题目&#xff1a; 题解&#xff1a; class Solution:def strongPasswordChecker(self, password: str) -> int:n len(password)has_lower has_upper has_digit Falsefor ch in password:if ch.islower():has_lower Trueelif ch.isupper():has_upper Trueelif ch.isdi…

基于SpringBoot+Vue的智慧物业管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 精品专栏&#xff1a;Java精选实战项目源码、Python精…

transformer模型进行英译汉,汉译英

上面是在测试集上的表现 下面是在训练集上的表现 上面是在训练集上的评估效果 这是在测试集上的评估效果,模型是transformer模型,模型应该没问题,以上的是一个源序列没加结束符和加了结束符的情况。 transformer源序列做遮挡填充的自注意力,这就让编码器的输出中每个token的语…

寄存器与内存

第三课&#xff1a;寄存器与内存、中央处理器&#xff08;CPU&#xff09;、指令和程序及高级 CPU 设计-CSDN博客 锁存器 引入 ABO0&#xff08;开始状态&#xff09;001&#xff08;将A置1&#xff09;110&#xff08;将A置0&#xff09;11 无论怎么做&#xff0c;都没法从1变…

大学生必看!60万人在用的GPT4o大学数学智能体有多牛

❤️作者主页&#xff1a;小虚竹 ❤️作者简介&#xff1a;大家好,我是小虚竹。2022年度博客之星&#x1f3c6;&#xff0c;Java领域优质创作者&#x1f3c6;&#xff0c;CSDN博客专家&#x1f3c6;&#xff0c;华为云享专家&#x1f3c6;&#xff0c;掘金年度人气作者&#x1…

Mamba所需的causal-conv1d 和mamba-ssm库在哪下载?

背景介绍 参照 Mamba [state-spaces/mamba: Mamba SSM architecture (github.com)] github中提到的环境安装[Installation 一栏] [Option] pip install causal-conv1d>1.4.0: an efficient implementation of a simple causal Conv1d layer used inside the Mamba block.…