智慧火灾应急救援航拍检测数据集(无人机视角)

智慧火灾应急救援。

无人机,直升机等航拍视角下火灾应急救援检测数据集,数据分别标注了火,人,车辆这三个要素内容,29810张高清航拍影像,共31GB,适合森林防火,应急救援等方向的学术研究,落地应用。

智慧火灾应急救援航拍检测数据集

数据集描述

该数据集是一个专门用于无人机和直升机等航拍视角下火灾应急救援场景中目标检测的数据集。数据集中的图像涵盖了多种复杂环境下的火灾现场,包括森林、城市区域等。数据集中详细标注了火源、人员以及车辆这三个关键要素,旨在帮助研究人员和开发者训练和评估基于深度学习的目标检测模型,适用于森林防火、应急救援等方向的学术研究和实际应用。

数据规模
  • 总样本数量:29810张高清航拍影像
  • 数据量:约31GB
  • 标注目标:所有图像都带有详细的标注信息,用于训练和验证目标检测模型。
目标类别及数量

数据集中包含以下目标类别:

  • 火 (Fire)
  • 人 (Person)
  • 车辆 (Vehicle)

具体每个类别的实例数量未提供,但可以假设每个类别都有足够的实例来支持模型训练和验证。

图像分辨率
  • 高清航拍影像:具体的分辨率可能因拍摄设备和高度而异,但均为高清图像。
拍摄高度
  • 多变的高度:涵盖从低空到高空的各种拍摄高度,以适应不同应用场景的需求。
场景多样性
  • 森林火灾:包括林区火灾现场。
  • 城市火灾:包括建筑物、道路等城市环境中的火灾现场。
  • 其他场景:可能还包括野外草地、农田等环境中的火灾场景。
标注格式

数据集中的标注信息采用了YOLO(You Only Look Once)格式的TXT文件。每个图像都有一个对应的标签文件,记录了每个目标的位置信息(边界框坐标)和类别标签。这种格式可以直接用于YOLO系列模型的训练。

数据集结构

典型的数据集目录结构如下:

1fire_emergency_rescue_dataset/
2├── images/
3│   ├── train/
4│   │   ├── img_00001.jpg
5│   │   ├── img_00002.jpg
6│   │   └── ...
7│   ├── val/
8│   │   ├── img_00001.jpg
9│   │   ├── img_00002.jpg
10│   │   └── ...
11│   └── test/
12│       ├── img_00001.jpg
13│       ├── img_00002.jpg
14│       └── ...
15└── labels/
16    ├── train/
17    │   ├── img_00001.txt
18    │   ├── img_00002.txt
19    │   └── ...
20    ├── val/
21    │   ├── img_00001.txt
22    │   ├── img_00002.txt
23    │   └── ...
24    └── test/
25        ├── img_00001.txt
26        ├── img_00002.txt
27        └── ...
28└── README.md  # 数据集说明文件
应用场景

该数据集可以用于以下应用场景:

  • 森林防火:通过无人机或直升机实时监测森林火灾情况,及时发现并定位火源。
  • 城市应急救援:在城市环境中快速识别火灾现场的火源、受困人员和救援车辆。
  • 智能监控系统:辅助智能监控系统,在各种复杂环境中进行火灾检测和人员救援。
  • 科研分析:用于研究目标检测算法和技术的发展趋势,特别是在航拍视角下的应用。

示例代码

以下是一个使用Python和相关库(如OpenCV、PIL等)来加载和展示数据集的简单示例代码:

1import os
2import cv2
3import numpy as np
4from PIL import Image
5
6# 数据集路径
7dataset_path = 'path/to/fire_emergency_rescue_dataset/'
8
9# 加载图像和标签
10def load_image_and_label(image_path, label_path):
11    # 读取图像
12    image = Image.open(image_path).convert('RGB')
13    # 解析标签文件
14    with open(label_path, 'r') as infile:
15        lines = infile.readlines()
16        objects = []
17        for line in lines:
18            data = line.strip().split()
19            class_id = int(data[0])
20            x_center, y_center, w, h = map(float, data[1:])
21            objects.append([x_center, y_center, w, h, class_id])
22    return image, objects
23
24# 展示图像
25def show_image_with_boxes(image, boxes):
26    img = np.array(image)
27    class_names = ['Fire', 'Person', 'Vehicle']
28    for box in boxes:
29        x_center, y_center, w, h, class_id = box
30        w, h = int(w * img.shape[1]), int(h * img.shape[0])
31        x_center, y_center = int(x_center * img.shape[1]), int(y_center * img.shape[0])
32        xmin, xmax = x_center - w // 2, x_center + w // 2
33        ymin, ymax = y_center - h // 2, y_center + h // 2
34        cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
35        cv2.putText(img, class_names[class_id], (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
36    cv2.imshow('Image with Boxes', img)
37    cv2.waitKey(0)
38    cv2.destroyAllWindows()
39
40# 主函数
41if __name__ == "__main__":
42    subset = 'train'  # 可以选择 'val' 或 'test'
43    images_dir = os.path.join(dataset_path, 'images', subset)
44    labels_dir = os.path.join(dataset_path, 'labels', subset)
45    
46    # 获取图像列表
47    image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
48    
49    # 随机选择一张图像
50    selected_image = np.random.choice(image_files)
51    image_path = os.path.join(images_dir, selected_image)
52    label_path = os.path.join(labels_dir, selected_image.replace('.jpg', '.txt'))
53    
54    # 加载图像和标签
55    image, boxes = load_image_and_label(image_path, label_path)
56    
57    # 展示带有标注框的图像
58    show_image_with_boxes(image, boxes)

这段代码展示了如何加载图像和其对应的YOLO TXT标注文件,并在图像上绘制边界框和类别标签。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。

示例代码:使用预训练模型进行推理

以下是使用YOLO预训练模型进行推理的示例代码:

1import torch
2import cv2
3import numpy as np
4from pathlib import Path
5
6# 数据集路径
7dataset_path = 'path/to/fire_emergency_rescue_dataset/'
8subset = 'test'  # 可以选择 'train' 或 'val'
9
10# 加载预训练模型
11weights_path = 'path/to/pretrained/yolov8_weights.pt'  # 替换成实际的预训练模型路径
12model = torch.hub.load('ultralytics/yolov5', 'custom', path=weights_path, force_reload=True)
13
14# 主函数
15if __name__ == "__main__":
16    images_dir = os.path.join(dataset_path, 'images', subset)
17    
18    # 获取图像列表
19    image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
20    
21    # 随机选择一张图像
22    selected_image = np.random.choice(image_files)
23    image_path = os.path.join(images_dir, selected_image)
24    
25    # 使用预训练模型进行推理
26    results = model(image_path)
27    results.show()  # 显示结果
28    results.save()  # 保存结果图像

这段代码展示了如何使用YOLO预训练模型进行推理,并显示和保存推理结果。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54320.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++ Primer Plus习题】16.10

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: #include <iostream> #include <string> #include <…

高质量的翻译:应用程序可用性和成功的关键

在日益全球化的应用市场中&#xff0c;开发一款优秀的产品只是成功的一半。另一半&#xff1f;确保你的用户&#xff0c;无论他们在哪里或说什么语言&#xff0c;都能无缝理解和使用它。这就是高质量翻译的用武之地——不是事后的想法&#xff0c;而是应用程序可用性和最终成功…

2-100 基于matlab的水果识别

基于matlab的水果识别。从面积特征、似圆形特征&#xff0c;颜色(rgb值和hsv值)特征对图像中的梨子、苹果、桃子、香蕉和菠萝进行特征提取&#xff0c;边缘检测识别&#xff0c;最后按照筛选出来的特征对水果进行识别。程序已调通&#xff0c;可直接运行。 下载源程序请点链接…

一天认识一个硬件之连接线

我们在日常工作生活中经常会用到许多连接线&#xff0c;比如视频线&#xff0c;USB线&#xff0c;但是他们的区别在哪里&#xff0c;可能太不清楚&#xff0c;今天就来给大家分享一下。 HDMI线 特点&#xff1a;HDMI线是一种全数字化视频和声音发送接口&#xff0c;可以发送未…

PCL 点云圆柱邻域搜索

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接&#xff1a; PCL点云算法与项目实战案例汇总&#xff08;长期更新&#xff09; 一、概述 本文将介绍如何使用PCL库进…

Snapchat API 访问:Objective-C 实现示例

Snapchat 是一个流行的社交媒体平台&#xff0c;它允许用户发送和接收短暂存在的图片和视频。对于开发者来说&#xff0c;访问 Snapchat API 可以为应用程序添加独特的社交功能。本文将介绍如何在 Objective-C 中实现对 Snapchat API 的访问&#xff0c;并提供一个详细的代码示…

spring boot启动报错:so that it conforms to the canonical names requirements

springboot 2.x的版本中对配置文件中的命名规范有了强制性的要求&#xff0c;如下图所示中的dataSource属性属于驼峰格式&#xff0c;但是在springboot 2.x中不允许使用驼峰形式。 根据错误提示可知将其使用 - 来分割即可 错误信息的含义&#xff1a;“Canonical names should…

LLM - 理解 多模态大语言模型(MLLM) 的 指令微调(Instruction-Tuning) 与相关技术 (四)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/142237871 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 完备(F…

最新版本TensorFlow训练模型TinyML部署到ESP32入门实操

最新版本TensorFlow训练模型TinyML入门实操 1.概述 这篇文章介绍微型嵌入式设备的机器学习TinyML&#xff0c;它们的特点就是将训练好的模型部署到单片机上运行。 2.TensorFlow深度学习原理 TensorFlow开源项目是由google研发的一个嵌入式机器学习工具&#xff0c;通过调用…

鸿蒙媒体开发系列07——AVRecorder音频录制

如果你也对鸿蒙开发感兴趣&#xff0c;加入“Harmony自习室”吧&#xff01;扫描下方名片&#xff0c;关注公众号&#xff0c;公众号更新更快&#xff0c;同时也有更多学习资料和技术讨论群。 1、概述 在HarmonyOS系统中&#xff0c;多种API都提供了音频录制开发的支持&#x…

2024永久激活版 Studio One 6 Pro for mac 音乐创作编辑软件 完美兼容

Studio One 6是一款功能强大的音乐制作软件&#xff0c;由PreSonus公司开发。它提供了全面的音频录制、编辑、混音和母带处理工具&#xff0c;适用于音乐制作人、音频工程师和创作人员。 Studio One 6拥有直观的用户界面&#xff0c;使用户能够快速而流畅地进行音乐创作。它采…

ubuntu安装emqx

目录 1.预先下载好emqx压缩包 2.使用tar命令解压 3.进入bin目录 5.放开访问端口18083 6.从通过ip地址访问emqx后台 7.默认用户名密码为admin/public 8.登录后台 9.资源包绑定在此博文可自取 1.预先下载好emqx压缩包 2.使用tar命令解压 sudo tar -xzvf emqx-5.0.8-el8-…

莱卡相机sd内存卡格式化了怎么恢复数据

在数字化时代&#xff0c;相机已成为我们记录生活、捕捉瞬间的重要设备。而SD内存卡&#xff0c;作为相机的存储媒介&#xff0c;承载着我们的珍贵记忆和重要数据。然而&#xff0c;有时由于误操作、系统错误或其他原因&#xff0c;我们可能会不小心格式化SD内存卡&#xff0c;…

一个基于VB的期刊信息管理系统

一个基本的期刊信息管理系统的示例&#xff0c;使用 Visual Basic (VB.NET) 编写。这个示例将展示如何创建一个简单的期刊信息管理系统&#xff0c;其中包括添加、查看、编辑和删除期刊的功能。 系统需求 添加期刊&#xff1a;允许用户输入期刊的信息&#xff08;如标题、作者…

OpenAI GPT o1技术报告阅读(3)-英文阅读及理解

✨继续阅读报告&#xff1a;使用大模型来学习推理(Reason) 原文链接&#xff1a;https://openai.com/index/learning-to-reason-with-llms/ 这次我们继续看一个英文阅读理解的案例。 原问题&#xff1a; The following passage is the draft of an excerpt from a contempora…

条件编译代码记录

#include <iostream>// 基类模板 template<typename T> class Base { public:void func() {std::cout << "Base function" << std::endl;} };// 特化的子类 template<typename T> class Derived : public Base<T> { public:void…

MYSQL数据库——MYSQL管理

MYSQL数据库安装完成后&#xff0c;自带四个数据库&#xff0c;具体作用如下&#xff1a; 常用工具 1.mysql 不是指mysql服务&#xff0c;而是指mysql的客户端工具 例如&#xff1a; 2.mysqladmin 这是一个执行管理操作的客户端程序&#xff0c;可以用它来检查服务器的配置和…

多线程篇六

多线程篇六 如笔者理解有误欢迎交流指正~⭐ 什么是单例模式&#xff1f; 单例模式是最常见的 设计模式. 顾名思义&#xff0c;单例模式指的就是单个实例的模式.&#xff08;针对某些类只能使用一个对象的场景【如MySQL、JDBC、DataSource】&#xff09; 设计模式 设计模式是…

数据结构之二叉树(1)

数据结构之二叉树&#xff08;1&#xff09; 一、树 1、树的概念与结构 &#xff08;1&#xff09;树是一种非线性的数据结构&#xff0c;由n(n>0)个有限结点组成一个具有层次关系的集合。 &#xff08;2&#xff09;树有一个特殊的结点&#xff0c;叫做根结点&#xff…

Linux:Bash中的文件描述符

相关阅读 Linuxhttps://blog.csdn.net/weixin_45791458/category_12234591.html?spm1001.2014.3001.5482 Linux中的所有进程&#xff0c;都拥有自己的文件描述符(File Descriptor, FD)&#xff0c;它是操作系统在管理进程和文件时的一种抽象概念。每个文件描述符由一个非负整…