如何让大模型更好地进行场景落地?

自ChatGPT模型问世后,在全球范围内掀起了AI新浪潮。

有很多企业和高校也随之开源了一些效果优异的大模型,例如:Qwen系列模型、MiniCPM序列模型、Yi系列模型、ChatGLM系列模型、Llama系列模型、Baichuan系列模型、Deepseek系列模型、Moss模型等。

图片来自:A Survey of Large Language Models

并且在去年的一整年中,大多数人都在做底座通用大模型的搭建、垂直领域大模型预训练或微调等工作。虽然大模型基础能力得到了很大程度的提升,但是大模型距离真正地落地,其实还有一段艰难的路要走。

图片来自:A Survey of Large Language Models

那么如何让大模型更好地进行场景落地,变得尤为重要。例如:如何优化通用大模型在领域上的效果,如何在某些场景中合理运用大模型,如何确保生成内容的稳定性和安全性,如何确保大模型可以在生产环境下稳定使用等。

《大型语言模型实战指南》一书从大模型应用落地角度出发,系统梳理了大模型的相关技术,也帮助读者学习如何优化开源大模型在不同领域或场景中的效果,详细讲述了如何搭建角色扮演、信息抽取、知识问答、AI Agent等各种各样的大模型应用。

角色扮演

角色扮演应用主要利用大模型来模拟不同属性和风格的人物和角色,如游戏人物、动漫角色、网络小说的主角、电影人物、电视人物,以及历史名人等,旨在为用户带来更精细、更沉浸的交互体验。

图片来自:From Persona to Personalization: A Survey on Role-Playing Language Agents

为了确保用户获得最佳的体验,角色扮演应用不仅需模拟角色基本的对话流程,还要求大型语言模型深入理解角色的性格、故事背景、情感状态和行为模式,从而塑造出更为智能和生动的AI角色。可以应用在教育、游戏、咨询、创作、培训等多个领域中。

图片来自:Two Tales of Persona in LLMs: A Survey of Role-Playing and Personalization

Text2SQL

Text2SQL应用就是将自然语言查询转换为结构化查询语言(SQL)语句,以便从数据库中检索数据。随着大模型能力的逐步提高,解决Text2SQL的任务的方法也从传统深度学习模型转向大模型。并且各种平台系统的ChatBI、数据分析等功能,均离不开Text2SQL技术。

图片来自:A Survey on Employing Large Language Models for Text-to-SQL Tasks

RAG

RAG(Retrieval-Augmented Generation,检索增强生成)技术,主要是在大型语言模型生成答案之前,通过检索方法从数据库中检索与用户查询相关的信息,利用这些相关信息指引大型语言模型进行答案生成。

RAG不仅极大程度地解决大型语言模型幻觉的问题,还提高模型回复的可靠性,提供生成答案的溯源信息,并且通过更新外部知识库实现对于知识的更新,无需重新训练模型,减少了模型训练更新的成本。目前,已经成为大型语言模型应用落地的重要方向。

RAG的整体流程主要涉及查询处理模块、内容检索模块、内容组装模块和大模型生成4个部分。当系统接收到用户查询Query进行初步处理后,利用向量检索模型从构建的向量知识库中检索到与其最相关的文档片段内容,再通过提示工程对用户查询Query和文档片段进行组装,最后利用大模型生成一个答案。

图片来自:Retrieval-Augmented Generation for Large Language Models: A Survey

AI Agent

Agent是能够感知自身所处环境、自我决策并采取行动的人工智能实体。Agent技术的应用范围广泛且多样化,它们不仅仅是简单的自动化工具,而是能够在多个领域中提供高效和创新的解决方案。

  • 自动化和效率化的工具:从简单的数据查询到复杂的决策制定,它们都能显著减少人工操作的需求,优化工作流程。

  • 数据分析和处理:在处理大量数据和执行复杂分析方面,能够从海量数据中提取有价值的信息,为企业和研究者提供快速、准确的洞察。

  • 交互式用户体验:通过自然语言处理和上下文感知技术,提供个性化和互动的用户体验,从而改善用户交互。

  • 智能决策支持:作为决策支持工具,在分析复杂情况和提供基于数据的建议方面表现突出,特别是在商业、医疗和科研等领域。

  • 集成与扩展服务:通过API调用外部服务,为用户提供全面和扩展的功能。可以通过API调用外部服务,将不同的功能和信息源集成到一个统一的接口中。

  • 自适应学习和进化:能够根据用户反馈和行为模式不断进化,以更好地满足用户需求。

The Rise and Potential of Large Language Model Based Agents: A Survey

延伸阅读

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54159.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简单题28-找出字符传中第一个匹配项的下标(Java and Python)20240918

问题描述&#xff1a; Java代码&#xff1a; class Solution {public int strStr(String haystack, String needle) {int n1 haystack.length();int n2 needle.length();if (n2 0) {return 0; // 如果 needle 为空字符串&#xff0c;直接返回 0}if (n1 < n2) {return -…

LeetCode[中等] 142. 环形链表 II

给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整…

LeetCode[中等] 438. 找到字符串中所有字母异位词

给定两个字符串 s 和 p&#xff0c;找到 s 中所有 p 的 异位词 的子串&#xff0c;返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字符串&#xff08;包括相同的字符串&#xff09;。 思路&#xff1a;滑动窗口 s包含p的异位词 ——> 则…

大数据新视界 --大数据大厂之数据科学项目实战:从问题定义到结果呈现的完整流程

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

组合逻辑电路的设计

目录 基本设计步骤 应用实例1&#xff08;三人表决电路&#xff09; 逻辑抽象 列真值表 化简&#xff08;卡诺图&#xff09; 转化为与非表达式 画逻辑图 应用实例2&#xff08;二进制转换为格雷码&#xff09; 逻辑抽象 列真值表 卡诺图化简 画逻辑图 基本设计…

【rust】rust条件编译

在c语言中&#xff0c;条件编译是一个非常好用的功能&#xff0c;那么rust中如何实现条件编译呢? rust的条件编译需要两个部分&#xff0c;一个是fratures&#xff0c;另一个是cfg。Cargo feature是一个非常强大的功能&#xff0c;可以提供条件编译和可选依赖项的高级特性&…

C++ -命名空间-详解

博客主页&#xff1a;【夜泉_ly】 本文专栏&#xff1a;【C】 欢迎点赞&#x1f44d;收藏⭐关注❤️ C -命名空间-详解 1.C语言缺点之一 -- 命名冲突2.命名空间2.1定义2.2使用访问命名空间中的变量展开命名空间域指定访问命名空间域 2.3其他功能 3.C 标准库中的命名空间指定展开…

云计算实训50——Kubernetes基础命令、常用指令

一、Kubernetes 自动补齐 # 安装自动补齐软件 [rootmaster ~]# yum -y install bash-completion # 临时开启自动补齐功能 [rootmaster ~]# source # 永 久开启自动补齐功能 [rootmaster ~]# echo "source > ~/.bashrc 二、Kubernetes 基础命令 kubectl [command] …

Linux:进程(二)

目录 一、cwd的理解 二、fork的理解 1.代码共享 2.各司其职 3.fork的返回值 三、进程状态 1.进程排队 2.进程状态 运行状态 一、cwd的理解 cwd&#xff08;current working directory&#xff09;。译为当前工作目录。 在C语言中&#xff0c;使用fopen函数打开文件时&…

MindShare PCIE 3.0 笔记-第一二章

MindShare 官网&#xff0c;地址如下: MindShare Chapter 1&#xff1a;PCIE 背景介绍 - PCI 总线模型 1. 以 PCI 总线作为外设总线的 SOC 芯片架构 下图展示了一个以 PCI 总线作为外设总线的 SOC 芯片架构(PCI 总线类似 AXI 下的 AHB&#xff1f;)&#xff1a; 由上图可知…

linux下的日志编写

1、日志初始化创建 2、日志写入 3、日志关闭 log.c #include "log.h"static log_t LOG;//初始化日志文件&#xff0c;在当前目录创建日志文件 int log_init(char *pdirname) {time_t t;struct tm *ptm NULL;char filepath[64] {0};int ret 0;time(&t);ptm …

linux安全软件Hydra使用教程

Hydra 是一个强大的网络登录工具&#xff0c;常用于渗透测试&#xff0c;支持对多种服务和协议&#xff08;如 SSH、FTP、HTTP 等&#xff09;进行暴力crack攻击。它可以通过字典攻击来测试用户名和密码的有效性。以下是关于如何使用 Hydra 的基本步骤和示例&#xff1a; 1. 安…

Mapsui:一个 .NET 开源的地图组件库

前言 今天大姚给大家分享一个.NET开源&#xff08;MIT License&#xff09;、免费、同时支持多平台框架&#xff08;MAUI、WPF、Avalonia、Uno、Blazor、WinUI、Eto、.NET Android 和 .NET iOS&#xff09;地图组件库&#xff1a;Mapsui。 项目源代码 支持的UI框架的NuGet包 创…

车市状态喜人,国内海外“两开花”

文/王俣祺 导语&#xff1a;随着中秋假期告一段落&#xff0c;“金九”也正式过半&#xff0c;整体上这个销售旺季的数据可以说十分喜人&#xff0c;各家车企不是发布新车、改款车就是推出了一系列购车权益&#xff0c;充分刺激了消费者的购车热情。再加上政府政策的鼎力支持&a…

828华为云征文|部署在线文件管理器 Spacedrive

828华为云征文&#xff5c;部署在线文件管理器 Spacedrive 一、Flexus云服务器X实例介绍1.1 云服务器介绍1.2 产品优势1.3 计费模式 二、Flexus云服务器X实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 Spacedrive3.1 Spacedrive 介绍3.2 Docker 环境搭建3.3 Spac…

MFC获取网页的html文本

使用 CInternetSession 类和 CHttpFile 类&#xff1b; 在stdafx.h中加入 #include <afxinet.h> &#xff1b; 基本的代码如下&#xff0c; void CMFCApplication3Dlg::OnBnClickedButton1() {// TODO: 在此添加控件通知处理程序代码try{CInternetSession session;CH…

Java创建教程!(*  ̄3)(ε ̄ *)

Java 构造函数 Java面向对象设计 - Java构造函数 构造函数是用于在对象创建后立即初始化对象的代码块。 构造函数的结构看起来类似于一个方法。 声明构造函数 构造函数声明的一般语法是 <Modifiers> <Constructor Name>(<parameters list>) throws <…

用户体验不好的网站都有哪些特点?

用户体验不好的网站通常具有一些共同的特点&#xff0c;这些特点会显著影响用户的浏览体验和满意度。下面详细介绍用户体验不好的网站的多个方面&#xff1a; 用户体验不好的网站都有哪些特点&#xff1f; 页面加载时间过长 用户等待时间长&#xff1a;如果一个网站的页面加载…

[Redis][Redis简介]详细讲解

目录 1.认识 Redis2.Redis 特性1.速度快2.基于键值对的数据结构的服务器3.丰富的功能4.简单稳定5.客户端语言多6.高扩展性7.持久化(Persistence)8.主从复制9.⾼可⽤和分布式 3.Redis 使用场景1.数据库2.Cache3.消息队列 4.注意 1.认识 Redis Redis是⼀种基于键值对(Key-Value)…

OpenHarmony(鸿蒙南向开发)——标准系统方案之瑞芯微RK3566移植案例(下)

往期知识点记录&#xff1a; 鸿蒙&#xff08;HarmonyOS&#xff09;应用层开发&#xff08;北向&#xff09;知识点汇总 鸿蒙&#xff08;OpenHarmony&#xff09;南向开发保姆级知识点汇总~ OpenHarmony&#xff08;鸿蒙南向开发&#xff09;——轻量系统STM32F407芯片移植案…