利用熵权法进行数值评分计算——算法过程

1、概述

在软件系统中,研发人员常常遇上需要对系统内的某种行为/模型进行评分的情况。例如根据系统的各种漏洞情况对系统安全性进行评分、根据业务员最近操作系统的情况对业务员工作状态进行打分等等。显然研发人员了解一种或者几种标准评分算法是非常有利于开展研发工作的。

目前流行的评分方法有很多种,诸如wilson评分算法、模糊综合评价法、秩和比评分法等等,本文内容介绍一种容易理解和编码实现的评分算法——熵权评分法。熵权法是一种基于信息论的方法,其核心在于通过计算数据中的熵来评估数据的不确定性。在信息论中,熵是衡量信息不确定性的一个重要指标。当数据集合中的概率分布更加均匀时,信息熵较大,表示数据的不确定性较高;反之,当概率分布更加集中时,信息熵较小,表示数据的不确定性较低‌。

2、计算过程

本文通过一个给员工工作状态评分的示例,介绍熵权法在实际工作中的使用。这个示例中本文不但演示熵权法的每个计算步骤,还通过一个Excel表格对每个计算步骤进行演练。这个示例的背景是,某公司针对员工的工作状态进行打分,这些打分要素包括了“迟到次数”、“食物带入办公区次数”、“遗忘打卡次数”、“下班后电脑未关次数”、“上厕所次数”、“计件质检评分”。
在这里插入图片描述
需要说明的是,熵权法进行编码实现时可以支持对评价维度的扩展。也就是说评价维度的多少并不影响计算步骤,只对某些步骤的计算数值产生影响。

2.1、进行数据标准化

评分指标分为正向指标(正向因子)和负向指标(负向因子)。正向指标是指该数据分值越高,对最后的评分结果影响越正面,例如电视的尺寸数据在电视综合评分中就是一个正向数据——尺寸越大综合评分越高;负向指标是指该数据分值越高,对最后的评分结果影响越负面,例如在网络安全评分场景下,某台终端端口被扫描的次数越多,则终端安全性得分越低。因为评分数据有正向和负向之分,所以评分计算的第一步是将各个评分要素进行标准化处理。处理公式如下所示:

在这里插入图片描述
如上图所示,正向指标和负向指标的数据标准化公式是不一样的,正向指标进行数据标准化的公式可以解释为:从各个评分参与者的正向指标中,取得得分最高的值和得分最低的值,相减后最为分母;使用当前要进行标准化的值,减去得分最低的值,作为分子;以下为计算结果:

在这里插入图片描述

以上图中的迟到次数为例,由于迟到次数是一个负向指标,所以“社畜8197”的迟到次数标准化的计算方式就是:分母为最大得分3 减去 最小得分1;分子为最大得分3 减去 “社畜8197”的次数0,得到结果为1。

另外要说明的是,由于是取得各个分母是各个参与者中的最大值,减去各个参与者中的最小值,所以当最大值和最小值为一样时,分母就可能为0;所以在进行标准化计算时,可以通过分母分子同时+1的方式,修正这种极端情况下的问题。以下是Excel使用的计算公式,可以看到分子分母都加了“1”:

在这里插入图片描述

2.2、求每个数值在评分列中的数值占比(数值比例)

还是以“迟到次数”这个负向指标为例,上一步我们求得了每个参与者“迟到次数”的数据标准值,分别为0.75、0.75、0.5、0.75、0.25、1、1、1;下面我们求每一个数值的数值占比,公式为:
在这里插入图片描述
这个公式很好理解,分母就是所有评分参与者的“迟到次数”数据标准值的和;分子就是某个具体的某个“迟到次数”的标准值。所以求得的数据如下表所示:
在这里插入图片描述

使用Excel文件进行计算过程演练时,可以使用以下公式进行表达:

在这里插入图片描述

2.3、求数值占比与自身(数值占比)对数的积

上一步我们计算出了每一个评分参与者在“迟到次数”这个要素上的数值占比,分别是0.125、0.125、0.0833333、0.125…… 。接下来我们就每个数和自身对数(以2为底)的积。熵权法要求对数的原因在于对数函数能够有效地衡量数据的不确定性,并确保信息的可加性。

X i = P i L o g ( P i ) X_i = P_i Log(P_i) Xi=PiLog(Pi)

在这里插入图片描述

使用Excel文件进行计算过程演练时,可以使用以下公式进行表达:

在这里插入图片描述

这个数值将在下一步正式进行熵值计算时,起到关键作用。

2.4、计算每个评分要素的熵值‌

现在我们开始正式计算每个参与评分的要素的熵值。在本示例中,这些要素分别就是“迟到次数”、“食物带入办公区次数”、“遗忘打卡次数”、“未关电脑次数”等等。熵值的计算公式如下:

在这里插入图片描述

这个公式分为两部分进行理解,其中第一部分就是K值的定义:

K = 1 / L o g ( N ) K = 1 / Log(N) K=1/Log(N)

其中N为参与评分的参与者数量,这个示例中N的值就是8(“牛马3197”、“圣斗士打工者”、“天地会总舵主”、“太上老君丹童”……)。这个公式的第二部分就是“西格玛符号”(∑)描述的求和部分,刚好是对我们2.3小节得到的每个栏目的值进行的求和。所以通过以上公式,我们能得到的计算结果如下图所示:

在这里插入图片描述

同样使用Excel文件进行计算过程演练,可以使用以下公式进行表达:

在这里插入图片描述

其中公式中“B37到B44”的值,就是2.3小节中每一个“迟到次数”通过求对数得到的值。

2.5、计算每个评分要素的权重值

现在我们有了每个评分要素的熵值,基于熵值我们可以求得每个平分要素的权重值——实际上这里的权重值可以理解为每个评分要素的熵值在整个熵值体系中的占比,其公式为:
在这里插入图片描述
其中分母为所有要素熵值的累加(d代表每一个要素的熵值),分子为当前要素的熵值。计算过程的演练表格如下所示:

在这里插入图片描述

2.6、基于权重值转换为10分制/100分制/或者N分制

有了每个评分要素的权重值(基于熵值得出),以及每个评分栏目标准化值(本文2.1小节所描述),就可以进行每个参与者的评分了——这个评分不能是10分制或者100分制或者1000分制的,而是一个得分基数。最后操作者可以根据这个得分基数,转换成自己所需的10分制或者100分制得分——最终用户可以看懂的得分。

得分基数的计算公式为:

在这里插入图片描述
公式是一个西格玛(∑)求和公式,其中每一个从1到m的w值,代表每一个评分要素的值;每一个x的值,代表每一个平分栏目。如果不好理解,可以看下图的解释

在这里插入图片描述

可以看到每个评分参与者的得分分别是:“牛马3197”——0.847662689、“圣斗士打工者”——0.736605139、“天地会总舵主”——0.861913661、“太上老君丹童”——0.763879745、“太乙真人弟子”——0.765103166、“社畜8197”——0.805163424、“超人完整体”——0.776911214、“标准满分参考”——1;

但是最终用户是看不懂这些得分基数的,所以需要一些形式上的计算过程,将基准评分转换为10分制、100分制或者某种最终用户能看懂的分数,如下所示:

在这里插入图片描述
E x c e l 栏目公式 = 100 / R O U N D U P ( M A X ( I 56 : I 62 ) , 3 ) ∗ I 56 Excel栏目公式=100/ROUNDUP(MAX(I56:I62),3)*I56 Excel栏目公式=100/ROUNDUP(MAX(I56:I62),3)I56

以上评分结果,这只是一个形式主义的计算过程,目的是让最终使用者根据日常习惯的计分方式对评分结果进行理解。后文我们将介绍熵权法的编码实现过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/53744.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

word文档无损原样转pdf在windows平台使用python调用win32com使用pip安装pywin32

前提: windows环境下,并且安装了office套装,比如word,如果需要调用excel.也需要安装。在另外的文章会介绍。这种是直接调用word的。所以还原度会比较高。 需求: word文档转pdf,要求使用命令行形式,最终发布为api接口…

数据库基础知识---------------------------(1)

数据库分类 关系型数据库 以表格方式存储数据 例子: MySQL、Oracle、DB2、SQLserver等 特点: SQL结构程度较高、安全性高、查询效率较低 非关系型数据库 以键值方式存储数据 例子: Redis、Hbase、MongoDB等 特点: 查询效率…

(不用互三)AI绘画工具大比拼:Midjourney VS Stable Diffusion该如何选择?

文章目录 💯如何选择合适的AI绘画工具根据个人需求选择1. 您喜欢什么风格的绘画?2. 您想要创作什么主题的内容?3. 您对绘画工具的使用经验如何? 比较工具特点1. 工具的易用性和功能性如何?易用性:功能性&am…

Qt_自定义信号

目录 1、自定义信号的规定 2、创建自定义信号 3、带参数的信号与槽 4、一个信号连接多个槽 5、信号与槽的断开 结语 前言: 虽然Qt已经内置了大量的信号,并且这些信号能够满足大部分的开发场景,但是Qt仍然允许开发者自定义信号&#…

基于vue框架的宠物寄养系统3d388(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能:用户,宠物信息,宠物分类,寄养店,宠物寄养,宠物领养,家庭环境,用户宠物 开题报告内容 基于Vue框架的宠物寄养系统开题报告 一、引言 随着人们生活水平的提高和宠物文化的普及,宠物已成为许多家庭不可或缺的一员。因此&…

实战案例(5)防火墙通过跨三层MAC识别功能控制三层核心下面的终端

如果网关是在核心设备上面,还能用MAC地址进行控制吗? 办公区域的网段都在三层上面,防火墙还能基于MAC来控制吗? 采用正常配置模式的步骤与思路 (1)配置思路与上面一样 (2)与上面区…

万象奥科参展“2024 STM32全国巡回研讨会”—深圳站、广州站

9月3日-9月5日,万象奥科参展“2024 STM32全国巡回研讨会”— 深圳站、广州站。此次STM32研讨会将会走进全国11个城市,展示STM32在智能工业、无线连接、边缘人工智能、安全、图形用户界面等领域的产品解决方案及多样化应用实例,深入解读最新的…

Linux系统部署SmartKG(知识图谱安装)

基本要求 #docker需要高版本 Docker version 20.10.14, build a224086docker 20.10.14离线安装 SmartKG官网 官方详细文档 下载部署包 SmartKG官网 准备部署 #上传到服务器 [roottest-server01 opt]# ll SmartKG-master.zip -rw-r--r-- 1 root root 79708691 Sep 11 17:4…

c++基类和派生类对象的赋值转换——赋值兼容规则

1.引出 如下场景: 由于b是double类型,所以赋值给int类型的引用前,要先进行隐式类型转换,这中间会生成临时对象,类是对象具有常性,所以int&之前应该加上const。 但是下面的场景: 没有出现报…

亚马逊测评自建团队与工作室的五大优势亮点,打造高权重评价系统

亚马逊上的产品评价,其实就是为了让买家们说出他们的真实想法,这样卖家就能知道怎么把东西做得更好,让买家更满意,还能让卖东西的招数更给力。效果有以下几点: 1. 商品更靠谱:买家说好,大家就更…

基于SSM的校园志愿者管理系统的设计与实现---附源码76245

摘 要 本文基于SSM框架,设计并实现了一套校园志愿者管理系统,旨在提高校园志愿服务管理的效率和质量。系统主要包括管理员、志愿者和活动发布者三大角色,涵盖了志愿者管理、活动管理、公告管理等功能模块,采用了MySQL作为数据库&…

【计算机组成原理】详细解读带符号整数在计算机中的运算

有符号整数的运算 导读一、补码的优势二、补码的加法运算三、补码的减法运算四、原码、反码、补码的特性结语 导读 大家好,很高兴又和大家见面啦!!! 经过前面的介绍,我们已经初步认识了有符号整数的三种表示形式&…

NPU 与 GPU 相比,有什么差别?| 技术速览

编者按: 随着2024年被业界誉为“AI PC元年”,各大笔记本电脑厂商纷纷推出搭载NPU的全新AI PC,而在介绍产品性能时,“NPU”一词频频被提及。但NPU和我们所熟知的GPU之间的区别究竟是什么? 我们今天为大家分享的这篇文章…

电水壶自复位热断循环测试合规性

在家用电器安全标准中,电水壶的安全性尤为重要,尤其是涉及热保护装置的部分。电水壶在日常使用中频繁接触高温水,极端情况下,温度可能异常升高。因此,为了确保用户的安全,热保护装置必须可靠工作。本文将探讨自复位热断路器(TCO)在电水壶中的作用,以及在100次循环测试…

如何在 Selenium 中获取网络调用请求?

引言 捕获网络请求对于理解网站的工作方式以及传输的数据至关重要。Selenium 作为一种 Web 自动化工具,可以用于捕获网络请求。本文将讨论如何使用 Selenium 在 Java 中捕获网络请求并从网站检索数据。 我们可以使用浏览器开发者工具轻松捕获网络请求或日志。大多数现代 Web…

creating chat agent with langchain and openai getting no attribute error

题意: 使用 LangChain 和 OpenAI 创建聊天代理时遇到“没有属性错误”(Getting "no attribute" error when creating a chat agent with LangChain and OpenAI) 问题背景: Im trying to test a chat agent using the …

房产销售系统|基于java和vue的房产销售系统(源码+数据库+文档)

房产销售|房地产|卖房系统 目录 基于java和vue的房产销售系统 一、前言 二、系统设计 三、系统功能设计 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍:✌️大厂码农|毕设布道师,…

95分App全程正品保障,赋能闲置消费新风尚

在当今快节奏、高消费的时代,闲置经济正以前所未有的速度崛起,成为新一代消费者的新宠。越来越多的年轻人开始拥抱闲置商品,将“断舍离”与“物尽其用”的理念融入日常生活,催生了闲置交易市场的空前繁荣。曾几何时,购…

【iOS】UIViewController的生命周期

UIViewController的生命周期 文章目录 UIViewController的生命周期前言UIViewController的一个结构UIViewController的函数的执行顺序运行代码viewWillAppear && viewDidAppear多个视图控制器跳转时的生命周期pushpresent 小结 前言 之前对于有关于UIViewControlller的…

补:在Spring Boot 当中使用 Thymeleaf 视图解析器

补&#xff1a;在Spring Boot 当中使用 Thymeleaf 视图解析器 想要在 Spring Boot 当中使用 Thymeleaf 视图&#xff0c;就需要导入相关的 jar 依赖。在 pom.xml 文件中配置 。 <!-- 引入 thymeleaf-start ,项目会自动完成配置&#xff0c;--><dependency>…