mysql创建新表,同步数据

import os
import argparse
import glob
import cv2
import numpy as np
import onnxruntime
import tqdm
import pymysql
import time
import json
from datetime import datetime

os.environ[“CUDA_VISIBLE_DEVICES”] = “0” # 使用 GPU 0

def get_connection():
“”“创建并返回一个新的数据库连接。”“”
# 数据库连接信息
host = ‘localhost’
user = ‘root’
password = ‘123456’
database = ‘video_streaming_database’
return pymysql.connect(host=host, user=user, password=password, database=database)

def get_connection_results():
“”“创建并返回一个新的数据库连接。”“”
# 数据库连接信息
host = ‘localhost’
user = ‘root’
password = ‘123456’
database = ‘results’
return pymysql.connect(host=host, user=user, password=password, database=database)

def ensure_connection(connection):
“”“确保连接有效。如果连接无效,则重新建立连接。”“”
if connection is None or not connection.open:
print(“Connection is invalid or closed. Reconnecting…”)
return get_connection()
return connection

def ensure_connection_results(connection):
“”“确保连接有效。如果连接无效,则重新建立连接。”“”
if connection is None or not connection.open:
print(“Connection is invalid or closed. Reconnecting…”)
return get_connection_results()
return connection

def get_parser():
parser = argparse.ArgumentParser(description=“onnx model inference”)

parser.add_argument("--model-path",default=R"/home/hitsz/yk_workspace/Yolov5_track/weights/sbs_r50_0206_export_params_True.onnx",help="onnx model path"
)
parser.add_argument("--input",default="/home/hitsz/yk_workspace/Yolov5_track/test_4S_videos/test_yk1_det3/save_crops/test_yk1/person/1/*jpg",nargs="+",help="A list of space separated input images; ""or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument("--output",default='/home/hitsz/yk_workspace/Yolov5_track/02_output_det/onnx_output',help='path to save the output features'
)
parser.add_argument("--height",type=int,default=384,help="height of image"
)
parser.add_argument("--width",type=int,default=128,help="width of image"
)
return parser

def preprocess(image_path, image_height, image_width):
original_image = cv2.imread(image_path)
norm_mean = np.array([0.485, 0.456, 0.406])
norm_std = np.array([0.229, 0.224, 0.225])
normalized_img = (original_image / 255.0 - norm_mean) / norm_std
original_image = normalized_img[:, :, ::-1]
img = cv2.resize(original_image, (image_width, image_height), interpolation=cv2.INTER_CUBIC)
img = img.astype(“float32”).transpose(2, 0, 1)[np.newaxis] # (1, 3, h, w)
return img

def normalize(nparray, order=2, axis=-1):
“”“Normalize a N-D numpy array along the specified axis.”“”
norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True)
return nparray / (norm + np.finfo(np.float32).eps)
data2 = []
if name == “main”:
args = get_parser().parse_args()

# 配置数据库连接
db_config = {'host': 'localhost','user': 'root','password': '123456','database': 'video_streaming_database',
}db_config_results = {'host': 'localhost','user': 'root','password': '123456','database': 'results',
}
# 定义批处理大小
batch_size = 500
pre_end_frame_idx = 10000
# 连接到数据库
connection = pymysql.connect(**db_config)
connection_results = pymysql.connect(**db_config_results)
while True:connection = ensure_connection(connection)  # 确保连接有效with connection.cursor() as cursor:cursor.execute("SELECT MAX(id) FROM new_detection_tracking_results_1")max_id = cursor.fetchone()[0]print(max_id)# 获取ID前面100条数据if max_id is not None:end_id = max(1, max_id-1)cursor.execute(f"SELECT crop_image_path FROM new_detection_tracking_results_1 WHERE id = {end_id}")crop_image_path = cursor.fetchall()                    connection.commit()connection.close()if max_id is not None:dir_path = os.path.dirname(os.path.dirname(crop_image_path[0][0]))file_name = os.path.basename(crop_image_path[0][0])cam_ip = file_name.split("_")[0]end_frame_idx = int(file_name.split("_")[1]) - 1440for i in range(pre_end_frame_idx, end_frame_idx):json_path = os.path.join(dir_path, cam_ip + "_" + str(i).zfill(8) + "_track.json")if not os.path.exists(json_path):continuecreation_time = os.path.getctime(json_path)# 转换为 '%Y-%m-%d %H:%M:%S' 格式formatted_creation_time = datetime.fromtimestamp(creation_time).strftime('%Y-%m-%d %H:%M:%S')# print(formatted_creation_time)for j in range(48):json_name_path = os.path.join(dir_path, cam_ip + "_" + str(i-j).zfill(8) + "_track_name.json")if os.path.exists(json_name_path):breakid_name = {}if os.path.exists(json_name_path):with open(json_name_path, 'r') as f1:id_name = json.load(f1)else:continueif os.path.exists(json_path[:-5]):continueif os.path.exists(json_path):      with open(json_path, 'r') as f:tracking_data = json.load(f)# 遍历跟踪结果,并绘制到图像上for key in tracking_data.keys():id = keyaction = tracking_data[key][6]if len(action.split("||")) == 0:continueelif len(action.split("||")) == 1:action_show = action.split("||")[0]else:action_show = action.split("||")[0] + " " + action.split("||")[1]if len(id_name) > 0 and key.zfill(4) in id_name.keys():name = id_name[key.zfill(4)].split("_")[0] + ": 0." + id_name[key.zfill(4)].split("_")[-1][:2]data2.append((cam_ip,int(end_frame_idx), \int(key),\name,\action_show,\formatted_creation_time))else:name = ""os.makedirs(json_path[:-5], exist_ok=True)print('---------len(data2) is:',len(data2))if len(data2) >= 500:connection_results = ensure_connection_results(connection_results)  # 确保连接有效with connection_results.cursor() as cursor:# 插入数据的SQL语句insert_sql = """INSERT INTO time_results (camera_ip, frame_number, tracking_id, matched_id, action_recognized, event_datetime)VALUES (%s, %s, %s, %s, %s, %s);"""# 执行插入操作cursor.executemany(insert_sql, data2)connection_results.commit()data2 = []pre_end_frame_idx = end_frame_idx   time.sleep(5)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/53369.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新HTML5中的文件详解

第5章 HTML5中的文件 5.1选择文件 可以创建一个file类型的input,添加multiple属性为true,可以实现多个文件上传。 5.1.1 选择单个文件 1.功能描述 创建file类型input元素,页面中不再有文本框,而是 选择文件 按钮,右侧是上次文件的名称&a…

argodb自定义函数读取hdfs文件的注意点,避免FileSystem已关闭异常

一、问题描述 一位同学反馈,他写的argo存过中调用了一个自定义函数,函数会加载hdfs上的一个文件,但有些节点会报FileSystem closed异常,同时有时任务会成功,有时会失败。 二、问题分析 argodb的计算引擎是基于spark…

解析 MySQL 数据库的 Python 接口:`mysqlclient` 与 `django-mysql` 实战指南20240904

博客标题:深入解析 MySQL 数据库的 Python 接口:mysqlclient 与 django-mysql 实战指南 引言 在现代 Web 开发中,数据库与应用程序的交互是不可避免的核心环节。对于使用 Python 尤其是 Django 框架的开发者来说,如何有效地与 M…

线性因子模型 - 概率PCA和因子分析篇

序言 在探索数据科学与机器学习的浩瀚领域中,深度学习作为一股不可小觑的力量,正以前所未有的方式重塑着我们对数据处理与知识发现的理解。在这一宏大的框架下,概率主成分分析( Probabilistic PCA, pPCA \text{Probabilistic PCA…

Python3中dict字典类型的用法

字典是另一种可变容器模型,且可存储任意类型对象。 key与value 允许存储任意类型对象 但key 不支持 list列表、字典等可变类型 字典的每个键值 key:value 对用冒号 : 分割,每个键值对之间用逗号 , 分割,整个字典包括在花括号 {} 1、定义字典…

数据分析面试题:客户投保问题分析

目录 0 场景描述 1 数据准备 2 问题分析 2.1 计算小微公司的平均经营时长 2.2 计算小微公司且角色为投保人,保险起期在18年的总保费 2.3 假设,DWD_CUSTOMER_REL客户关联关系表中,存在部分客户保单数很多,部分客户保单数很少的情况,此时DWD_CUSTOMER_BASE表关联,程序…

鸿蒙OS试题

60当您开始开发一个应用/服务时,首先需要根据工程创建向导,创建一个新的工程,工具会自动生成对应的代码和资源模板。关于新建工程,下列选项说法正确的是? A.、创建用于Lite Wearable设备的工程,可以选择Native C工程…

百度智能云向量数据库创新和应用实践分享

本文整理自第 15 届中国数据库技术大会 DTCC 2024 演讲《百度智能云向量数据库创新和应用实践分享》 在 IT 行业,数据库有超过 70 年的历史了。对于快速发展的 IT 行业来说,一个超过 70 年历史的技术,感觉像恐龙一样,非常稀有和少…

Anaconda Prompt 安装paddle2.6报错

bug描述 python 3.11.9 通过 pip install paddlepaddle2.6.1 安装后,运行 paddle.utils.run_check() 则出现下面的错误: 解决办法 方法一:使用paddle 3的版本 这里要注意我的python版本 方法二:使用低版本的python python3.9…

[项目][CMP][直接向堆申请页为单位的大块内存]详细讲解

目录 1.系统调用 1.系统调用 Windows和Linux下如何直接向堆申请页为单位的大块内存&#xff1a; VirtualAllocbrk和mmap // 直接去堆上按页申请空间 static inline void *SystemAlloc(size_t kpage) { #ifdef _WIN32void *ptr VirtualAlloc(0, kpage << 13, MEM_COMM…

Lombok jar包引入和用法

大家好&#xff0c;今天分享一个在编写代码时的快捷方法。 当我们在封装实体类时&#xff0c;会使用set、get等一些方法。如下图&#xff0c;不但费事还影响代码的美观。 那么如何才能减少代码的冗余呢&#xff0c;首先lib中导入lombok的jar包并添加库。 此处我已导入&#xf…

Jenkins+Svn+Vue自动化构建部署前端项目(保姆级图文教程)

目录 介绍 准备工作 配置jenkins 构建部署任务 常见问题 介绍 在平常开发前端vue项目时,我们通常需要将vue项目进行打包构建,将打包好的dist目录下的静态文件上传到服务器上,但是这种繁琐的操作是比较浪费时间的,可以使用jenkins进行自动化构建部署前端vue 准备工作 准备…

如何设计实现完成一个FPGA项目

设计并完成一个FPGA项目是一个复杂但非常有价值的工程任务。以下是一个详细的步骤指南,帮助你从零开始完成一个FPGA项目。 1. 项目定义与需求分析 确定项目目标:明确项目要实现的功能和性能指标。需求分析:列出所有功能需求、性能需求、接口需求等。可行性分析:评估技术可…

Linux操作系统命令集(一)

最近开了操作系统的课&#xff0c;弄着虚拟机的linux系统命令学学 文件和目录操作命令&#xff1a; ls&#xff1a;列出目录内容 示例&#xff1a;ls -l 以长格式列出目录内容cd&#xff1a;切换目录 示例&#xff1a;cd /home/user 切换到 /home/user 目录mkdir&#xff1a;…

《粮食科技与经济》是什么级别的期刊?是正规期刊吗?能评职称吗?

​问题解答 问&#xff1a;《粮食科技与经济》是不是核心期刊&#xff1f; 答&#xff1a;不是&#xff0c;是知网收录的第一批认定学术期刊。 问&#xff1a;《粮食科技与经济》级别&#xff1f; 答&#xff1a;省级。主管单位&#xff1a; 湖南省粮食和物资储备局 …

bat批处理实现从特定文件夹中提取文件内容并以父文件夹名存储

1、需求分析 标题是bat批处理实现从特定文件夹中提取文件内容并以父文件夹名存储。这里面我们要做的工作是&#xff1a; ①、批处理脚本使用的是bat文件&#xff1b; ②、文件夹下面有很多子文件夹&#xff0c;然后子文件夹下仍然有相同的文件结构&#xff0c;我们需要从三级…

halcon 自定义距离10的一阶导数幅图,摆脱sobel的3掩码困境

一&#xff0c;为什么要摆脱3的掩码 在处理图像的过程中&#xff0c;会用到平滑算子&#xff0c;很容易破坏边际&#xff0c;所谓的一阶导数sobel只计算掩码为3的差分&#xff0c;在幅度图分割中&#xff0c;往往是很难把握的。 举个例子-现在图像头平滑好了&#xff0c;缺陷…

模具要不要建设3D打印中心

随着3D打印技术的日益成熟与广泛应用&#xff0c;模具企业迎来了自建3D打印中心的热潮。这一举措不仅为企业带来了前所未有的发展机遇&#xff0c;同时也伴随着一系列需要克服的挑战&#xff0c;如何看待企业引进增材制造&#xff0c;小编为您全面分析。 机遇篇&#xff1a; 加…

Codeforces Round (Div.3) C.Sort (前缀和的应用)

原题&#xff1a; time limit per test&#xff1a;5 seconds memory limit per test&#xff1a;256 megabytes You are given two strings a and b of length n. Then, you are (forced against your will) to answer q queries. For each query, you are given a range …

FPGA开发:Verilog数字设计基础

EDA技术 EDA指Electronic Design Automation&#xff0c;翻译为&#xff1a;电子设计自动化&#xff0c;最早发源于美国的影像技术&#xff0c;主要应用于集成电路设计、FPGA应用、IC设计制造、PCB设计上面。 而EDA技术就是指以计算机为工具&#xff0c;设计者在EDA软件平台上…