GPT-4o mini轻量级大模型颠覆AI的未来

279d94c3f757cf49cc5592a3a2fc4c09.jpeg

 

GPT-4o mini发布,轻量级大模型如何颠覆AI的未来?

   

ed595e2189bb233573fde1574709564b.jpeg


  引言

随着人工智能技术的飞速发展,大型AI模型的发布已成常态。然而,庞大的计算资源和存储空间限制了它们在广泛场景中的应用。为满足市场需求,轻量级大模型应运而生,凭借高效的性能和低资源消耗,逐渐成为市场的新宠。

如今,AI大模型竞争的焦点已从“做大做强”转向“做小做精”,超越GPT-4o不再是唯一成功标准。在市场竞争新阶段,如何打动用户不仅依赖技术实力展示,更需证明在性能相当下,模型更小巧、经济、具性价比。

苹果自去年以来积极探索适用于手机的端侧模型,而OpenAI,以惊人扩张而著称,最近也加入了这一领域。OpenAI推出了轻量级小参数模型GPT-4o mini,顺应市场趋势,试图通过经济高效的模型拓展更广阔的市场。

一、轻量级大模型的定义与特点

1.与传统大模型的区别

轻量级大模型(LLMs)结合了高性能和广泛的应用潜力,同时拥有更小的参数量、低资源消耗以及更高的性价比。相较于传统大模型,它们的主要区别在于:

参数规模与挑战:传统大模型参数繁多,从数百亿到数万亿不等,训练和运行需大量计算资源且成本高昂。轻量级大模型通过架构优化、模型蒸馏等技术,在大幅度减小参数量的同时,仍保持或接近大模型性能。

训练与推理成本大幅降低:轻量级大模型GPT-4o mini以数亿参数实现接近千亿参数模型的性能,训练和推理成本仅数个数量级。

ccaf5dd9d52755dc74233f9edba42527.jpeg

部署与应用场景:传统大模型适用于数据中心与云端,以满足高性能计算需求。轻量级大模型则更适合在边缘设备、移动端等环境中部署,实现低延时和高隐私性的数据处理,如智能手机、物联网设备等终端设备上的本地运行。

创新与技术:轻量级大模型需更高效的数据治理、优化训练策略和先进模型架构。MiniCPM系列通过高效稀疏架构和知识密度优化,实现小模型高性能。

2. 主要特征

小参数模型更容易融入热门领域的技术探索和商业化策略。面壁智能的刘知远教授认为,2023年ChatGPT和GPT-4的推出表明大模型技术路线已经基本确定,接下来的重点是探索其科学机理,并极致地优化效率。通过“以小博大”的理念,挑战了超大参数模型的效率。

轻量级大模型的主要特征如下:
- 模型大小更小,训练速度更快;
- 模型精度更高,泛化能力更强;
- 模型更加灵活,可适应不同领域的需求。

快速响应:在处理速度和响应时间上更具优势,适合需要实时处理的应用场景。

适应性强:无论设备资源如何受限,如智能手机、物联网设备或嵌入式系统,都能流畅运行,广泛适应性令人印象深刻。

二、市场需求分析

随着生成式AI技术的迅猛发展,大模型领域正经历从“做大做强”到“小而精”的显著转变。市场需求的变化,促使了技术发展的新方向。GPT-4o Mini 的发布进一步突显了轻量级大模型在当前市场中的重要性。

生成式人工智能有广阔的发展前景,包括预训练语言模型、ChatGPT上下文学习和基于人类反馈的强化学习三个关键技术,以及ChatGPT对相关人工智能研究的影响。


1、企业需求

优化后的文章:成本效益:传统大模型高昂训练及部署成本。轻量级大模型降低计算与存储需求,助企业控制开支,提高投资回报率。

许多企业面临硬件资源限制,轻量级模型能够在有限的资源条件下提供高效性能,从而优化资源配置。轻量级模型是指在保持较高准确性的前提下,采用更少的数据和更简单的模型结构,从而减少计算量和存储空间。这样可以更好地满足企业在有限硬件资源下的业务需求。

2、用户需求

除了企业,个人用户和开发者对轻量级大模型的需求也在增加:

移动便捷:用户期待在移动设备上体验AI助手如语音识别和实时翻译。轻量级模型让智能手机等设备高效运行,满足您的需求。

"用户个性化需求的提升,驱动了轻量级模型的发展。这种高效的处理方式和定制化能力,让其能够提供更贴合用户心意的个性化服务。"

三、轻量级大模型的应用场景

162e3972a0d8fe081e177e5b9ac5dc81.jpeg

终端智能化:轻量级大模型驱动,智能手机、家居、车载等设备实现高效本地化AI处理,提升用户体验与数据隐私保护。

76a0ec1d01fbbbdc5ab3dfd2fe623039.jpeg

轻量级大模型正逐渐成为各领域的翘楚,展现出广泛的应用前景。随着技术的持续精进与创新,2024年将是这一趋势的关键之年,预示着轻量级大模型将在更多领域释放其巨大的潜力和应用价值。

四、轻量级大模型的技术实现

轻量级大模型的技术实现方法包括但不限于以下几种:SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)、PEFT(Parameter-Efficient Fine-Tuning)、LLI(Large Language Model for Information Extraction)等。这些方法旨在降低计算资源和存储需求,同时保持模型的性能 。

1、模型压缩

权重量化(Weight Quantization):通过使用较低位宽(如8位、4位)表示模型参数,大幅降低存储和计算成本。以二值化为例,权重压缩至+1或-1,实现极简存储需求。

权重剪枝是一种有效减少模型复杂度、计算量和存储需求的方法,通过移除冗余连接或神经元实现。尽管剪枝后可能需要重新训练以恢复性能,但它仍为优化模型提供了重要手段。

"简述模型蒸馏:一种方法,通过借鉴大型预训练模型的知识,训练出更小却保持高性能的模型。这个‘学徒’模型,通过模仿导师的行为来提升自身技能。"

08cafbbd017b51c2fd96286d174758cf.jpeg

2、轻量化网络结构

深度可分离卷积(Depthwise Separable Convolution)是一种将标准卷积分解为深度卷积和逐点卷积的技术,以减少计算量和参数数量。例如,MobileNet采用这种技术显著降低了计算复杂度。

深度可分离卷积是将一个完整的卷积运算分解为两步进行,即Depthwise卷积与Pointwise卷积。不同于常规卷积操作,Depthwise卷积的一个卷积核负责一个通道,一个通道只被一个卷积核卷积。

同样是对于一幅128×128像素、三通道彩色输入图像(尺寸为128×128×3),Depthwise卷积首先经过第一次卷积运算,完全是在二维平面内进行。 卷积核的数量与上一层的通道数相同,即,通道和卷积核一一对应。 所以一个三通道的图像经过运算后生成了3个特征图。

分组卷积(Group Convolution)是一种将卷积操作分成多个组来减少计算量的技术,广泛应用于轻量化网络结构中,如ShuffleNet。

这种技术能够增加 filter之间的对角相关性,而且能够减少训练参数,不容易过拟合,这类似于正则的效果。

神经网络架构搜索(Neural Architecture Search, NAS)是一种自动化方法,旨在寻找最优的网络结构以降低计算复杂度和参数数量。借助NAS技术,我们能够设计出更具效率的网络结构。

3、硬件加速

优化后的文章:借助专用硬件(如NVIDIA Jetson和Google Coral TPU等),大幅提升模型推理速度,实现高效计算。这类硬件专为边缘设备设计,助力加速解决方案。

4、软件优化

优化推理引擎:借助诸如TensorFlow Lite和ONNX Runtime的高性能推理引擎,大幅提升端设备上的运行速度。这些引擎专为低功耗与资源受限环境量身打造。

提升计算效率的秘密武器:高性能计算库(如OpenBLAS、MKL-DNN),它们为数学运算带来卓越优化,助你轻松征服计算难题。

5、迁移学习和微调

"微调预训练,提速增效。大规模数据集上预训练的轻量级模型,迁移学习新趋势,让目标任务训练更迅速,性能更卓越。"

数据增强:通过数据增强技术扩充训练数据集,提高模型在小数据集上的泛化能力。

结论

轻量级大模型正成为AI发展新趋势,GPT-4o Mini发布展示其高效、低成本、易部署优势。技术进步与市场需求推动未来大模型朝更高效、轻量、亲民方向发展,为更多行业提供强大支持。


-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/53080.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TOMATO靶机漏洞复现

步骤一,我们来到tomato页面 什么也弄不了只有一番茄图片 弱口令不行,xxs也不行,xxe还是不行 我们来使用kali来操作... 步骤二,使用dirb再扫一下, dirb http://172.16.1.133 1.发现这个文件可以访问.我们来访问一下 /antibot_i…

【课程学习】信号检测与估计

文章目录 3.7-CRB延展到向量的形式3.8-参数变换形式的CRB CRB for transformation, pp45-463.9-高斯分布 CRLB for the General Gaussian Case3.7-CRB延展到向量的形式 0904 向量和变换形式的CRLB形式 估计参数真实值 θ \theta θ,估计值 θ ^ \hat \theta θ^ 与信号与系统…

C# NX二次开发-获取对象名称

UG软件是所有带标签对象都能设置名称和属性: 代码: theUf.Obj.AskName(body.Tag,out string name);name.NxListing(); 免责声明: 只用于参考,如果有什么问题不要找我呀。

【JAVA入门】Day27 - 单列集合体系结构综述

【JAVA入门】Day27 - 单列集合体系结构 文章目录 【JAVA入门】Day27 - 单列集合体系结构1.1 Collection 集合的基本方法1.2 Collection 集合的遍历方式1.2.1 迭代器遍历1.2.2 增强 for 遍历1.2.3 利用 Lambda 表达式进行遍历 1.3 List 集合的基本方法1.4 List 集合的遍历方式 J…

WordPress自适应美图网站整站打包源码

直接服务器整站源码数据库打包了,恢复一下就可以直接投入使用。保证好用易用,无需独立服务器就可以使用。 强调一下,我这个和其他地方的不一样、不一样、不一样。具体的看下面的说明。 现在网络上同样的资源包都是用的加密带后门的主题&…

年化收益37.7%的A股小市值策略,小市值和动量因子长期有效(附具体逻辑)

“ 原创内容第640篇,专注量化投资、个人成长与财富自由” 股票的“小市值”策略,就像ETF的趋势动量一样,长期有效。 这是一个很神奇的异象。 年化37.07%,夏普0.89。 这里我做了一些特殊的处理: 1、包括排除了科创板…

Pencils Protocol生态新进展,即将上线 Vault 产品

“极高的盈利预期、通证的持续回购与销毁,Vault产品的推出正在成为Pencils Protocol生态发展的重磅利好。” Pencils Protocol是目前Scroll生态TVL最高的DeFi平台 ,即便是行情整体较为平淡,其仍旧能够保持在3亿美元左右的锁仓价值&#xff0c…

day35-测试之性能测试JMeter的测试报告、并发数计算和性能监控

目录 一、JMeter的测试报告 1.1.聚合报告 1.2.html报告 二、JMeter的并发数计算 2.1.性能测试时的TPS,大都是根据用户真实的业务数据(运营数据)来计算的 2.2.运营数据 2.3.普通计算方法 2.4.二八原则计算方法 2.5.计算稳定性测试并发量 2.6…

Mybatis链路分析:JDK动态代理和责任链模式的应用

背景 此前写过关于代理模式的文章,参考:代理模式 动态代理功能:生成一个Proxy代理类,Proxy代理类实现了业务接口,而通过调用Proxy代理类实现的业务接口,实际上会触发代理类的invoke增强处理方法。 责任链功…

Mac 安装Hadoop教程(HomeBrew安装)

1. 引言 本教程旨在介绍在Mac 电脑上安装Hadoop,便于编程开发人员对大数据技术的熟悉和掌握。 2.前提条件 2.1 安装JDK 想要在你的Mac电脑上安装Hadoop,你必须首先安装JDK。具体安装步骤这里就不详细描述了。你可参考Mac 安装JDK8。 2.2 配置ssh环境…

【CVPR‘24】DeCoTR:使用 2D 和 3D 注意力增强深度补全

DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions 中文解析摘要介绍方法方法3.1 问题设置3.2 使用高效的 2D 注意力增强基线3.3 3D中的特征交叉注意力点云归一化位置嵌入3.4 捕捉 3D 中的全局上下…

给鼠标一个好看的指针特效 鼠标光标如何修改形状?

许多爱美的小伙伴们都想着如何给自己的电脑打扮一下,用各种各样的途径来美化我们的电脑。今天我们给大家分享一下,如何美化鼠标效果,给鼠标指针修改成一个非常好看的形状~ 一起来看几组鼠标的效果,小编我给大家做了个录屏&#x…

linux文件——用户缓冲区——概念深度探索、IO模拟实现

前言:本篇文章主要讲解文件缓冲区。 讲解的方式是通过抛出问题, 然后通过分析问题, 将缓冲区的概念与原理一步一步地讲解。同时, 本节内容在最后一部分还会带友友们模拟实现一下c语言的printf, fprintf接口&#xff0c…

依托自研力量,给共享集群存储服务一个优选

YashanDB共享集群有三大关键组件,崖山集群服务(YCS)、崖山集群文件系统(YFS)、DB组件。上一篇共享集群系列文章《为何共享集群的高可用能力被频频称赞,它的机制有何不同?》深入解析了关键组件的…

NVIDIA RTX 50系列大爆料:功耗飙升600W,性能直逼RTX 4090 1.?倍,你准备好了吗?

在科技圈的万众瞩目下,知名硬件爆料大神Kopite7kimi再次为我们揭开了NVIDIA下一代GeForce RTX系列——“Blackwell”阵容的神秘面纱。这次,关于新显卡的功耗信息不再是模糊的概念,而是实实在在的数字,让人不禁对即将到来的性能飞跃…

ELK学习笔记(一)——使用K8S部署ElasticSearch8.15.0集群

一、下载镜像 #1、下载官方镜像 docker pull elasticsearch:8.15.0 #2、打新tag docker tag elasticsearch:8.15.0 192.168.9.41:8088/new-erp-common/elasticsearch:8.15.0 #3、推送到私有仓库harbor docker push 192.168.9.41:8088/new-erp-common/elasticsearch:8.15.0二、…

Python3.8绿色便携版安装版制作

Python 的绿色便携版有两种:官方 Embeddable 版本(嵌入式版);安装版制作的绿色版。Embeddable 版适用于需要将 Python 集成到其他应用程序或项目中的情况,它不包含图形界面的安装程序,只提供了 Python 解释器和必要的库…

排查SQL Server中的内存不足及其他疑难问题

文章目录 引言I DMV 资源信号灯资源信号灯 DMV sys.dm_exec_query_resource_semaphores( 确定查询执行内存的等待)查询性能计数器什么是内存授予?II DBCC MEMORYSTATUS 查询内存对象III DBCC 命令释放多个 SQL Server 内存缓存 - 临时度量值IV 等待资源池 %ls (%ld)中的内存…

Matlab R2022b使用Camera Calibrator工具箱张正友标定法进行相机标定附带标定前后对比代码

打开Camera Calibrator 在这添加你拍摄的图片 根据你每个方块的实际边长填写,我是15mm。 通俗一点,要k3就选3 Coefficients,否则为0;要p1、p2就选Tangential Distortion。然后进行计算。 可以点击右侧误差高的选中图像进行移…

AI-Talk开发板之LED

一、说明 AI-Talk开发板上有一颗用户LED,连接在CH32 PA2管脚,低电平亮,高电平灭。 相关电路图如下: 二、工程 1、创建项目 进入snap/examples/目录,执行创建项目的命令: lisa zep create ? 选择sam…