PostgreSQL分区表原理、案例的灵活应用

PostgreSQL分区表的灵活应用

通常情况下,扫描一个大表会很慢,需要扫描整张表格,如果能够把大表分拆成小表,查询数据的时猴,只扫描数据所属的小表,就能大大降低扫描时间,提高查询速度。

1、简介

PostgreSQL10之前的版本不支持内置分区表,若要实现分区功能,需通过继承的方式实现。

PostgreSQL 10.x 之前的版本提供了一种“手动”方式使用分区表的方式,需要使用继承 + 触发器的来实现分区表,步骤较为繁琐,需要定义附表、子表、子表的约束、创建子表索引,创建分区删除、修改,触发器等。

PostgreSQL 10.x 开始提供了内置分区表(内置是相对于 10.x 之前的手动方式)。内置分区简化了操作,将部分操作内置,最终简单三步就能够创建分区表。但是只支持范围分区(RANGE)和列表分区(LIST),11.x 版本添加了对 HASH 分区。

如果要充分使用分区表的查询优势,必须使用分区时的字段作为过滤条件。
除了在查询上的优势,分区表的使用也可提高删除数据的性能,因为删除一个分区要比删除分区上的所有数据要快的多。这些命令也完全避免了由批量DELETE造成的VACUUM负载。

概念:分区表就是根据分区策略,将数据数据分散到不同的子表中,并通过父表建立关联关系,从而实现数据物理上的分区。

文章目录

  • PostgreSQL分区表的灵活应用
    • 1、简介
    • 2、列表分区
    • 3、范围分区
    • 4、分区管理
    • 5、常用的分表方式,范围分区(包括分区表嵌套,添加、删除分区)
      • 5.1、创建主表
      • 5.2、创建分区表
      • 5.3、创建生成数据的函数
      • 5.4、插入数据到表格
      • 5.5、断开分区
      • 5.6、再创建与原来那个分区表一样的表结构,添加两个分区
      • 5.7、把原先那个总表的2021分区表数据导入现在分区表
      • 5.8、把这个分区表加入到到之前的分区表分区中
      • 5.9、查看当前的分区表信息

2、列表分区

--创建主表
CREATE TABLE info_list (id bigint NOT NULL,protocol varchar(16),ip varchar(50),create_time timestamp
) partition by list(create_time);--创建分区表
create table info_list20200801 partition of info_list for values in ('2020-08-01');
create table info_list20200802 partition of info_list for values in ('2020-08-02');
create table info_list20200803 partition of info_list for values in ('2020-08-03');
--分区表建索引
CREATE INDEX idx_info_list20200801 ON info_list20200801 (create_time);
CREATE INDEX idx_info_list20200802 ON info_list20200802 (create_time);
CREATE INDEX idx_info_list20200803 ON info_list20200803 (create_time);

3、范围分区

注意:如分表的范围为2020-08-01至2020-08-02,则包含前者,不包含后者。相当于时a<=create_time<b。

--1、创建主表(根据create_time进行范围分区)
CREATE TABLE info_range (id bigint NOT NULL,protocol varchar(16),ip varchar(50),create_time timestamp
) partition by range(create_time);
--2、创建分表(根据下面表范围,如果插入2020-08-04,则会报错;如范围为2020-08-01至2020-08-02,则包含前者,不包含后者。相当于时a<=create_time<b;)
create table info_range20200801 partition of info_range for values from ('2020-08-01') to ('2020-08-02');
create table info_range20200802 partition of info_range for values from ('2020-08-02') to ('2020-08-03');
create table info_range20200803 partition of info_range for values from ('2020-08-03') to ('2020-08-04');--3、创建索引
CREATE INDEX idx_info_range20200801 ON info_range20200801 (create_time);
CREATE INDEX idx_info_range20200802 ON info_range20200802 (create_time);
CREATE INDEX idx_info_range20200803 ON info_range20200803 (create_time);

4、分区管理

--断开分区
alter table info_range detach partition info_range20200803;
--连接分区
alter table info_range attach partition info_range20200803 for values from ('2020-08-03') to ('2020-08-04');
--删除分区
drop table info_range20200803;

PG11以上

哈希分区
通过为每个分区指定模数和余数来对表进行分区。每个分区所持有的行都满足:分区键的值除以为其指定的模数将产生为其指定的余数。

5、常用的分表方式,范围分区(包括分区表嵌套,添加、删除分区)

如给大表分区后的某个分区还是特别大,可以弄个二级分区,就像结构树那样嵌套下去(具体做法请参考5.5~5.8)

5.1、创建主表

CREATE TABLE sales_orders (order_id SERIAL,                       -- 订单ID,自动递增customer_id INT NOT NULL,              -- 客户ID,不允许为空order_date DATE NOT NULL,              -- 订单日期,不允许为空amount NUMERIC(10, 2) NOT NULL,        -- 订单金额,精确到小数点后两位,不允许为空status VARCHAR(20),                    -- 订单状态,例如 'completed' 或 'pending'CONSTRAINT sales_orders_pkey PRIMARY KEY (order_id, order_date) -- 设定主键约束,唯一标识每一条订单
)
PARTITION BY RANGE (order_date);          -- 根据订单日期进行范围分区

5.2、创建分区表


CREATE TABLE sales_orders_2021PARTITION OF sales_ordersFOR VALUES FROM ('2021-01-01') TO ('2021-12-31'); -- 2021年的订单分区CREATE TABLE sales_orders_2022PARTITION OF sales_ordersFOR VALUES FROM ('2022-01-01') TO ('2022-12-31'); -- 2022年的订单分区CREATE TABLE sales_orders_2023_q1_q2PARTITION OF sales_ordersFOR VALUES FROM ('2023-01-01') TO ('2023-06-30'); -- 2023年第一季度和第二季度的订单分区CREATE TABLE sales_orders_2023_q3_q4PARTITION OF sales_ordersFOR VALUES FROM ('2023-07-01') TO ('2023-12-31'); -- 2023年第三季度和第四季度的订单分区CREATE TABLE sales_orders_2024PARTITION OF sales_ordersFOR VALUES FROM ('2024-01-01') TO ('2024-12-31'); -- 2024年的订单分区

5.3、创建生成数据的函数

CREATE OR REPLACE FUNCTION insert_random_data(start_date DATE,   -- 起始日期end_date DATE,     -- 结束日期num_rows INT        -- 生成的记录数量
) RETURNS VOID LANGUAGE plpgsql AS $$
BEGININSERT INTO sales_orders (customer_id,   -- 客户IDorder_date,    -- 订单日期amount,        -- 订单金额status         -- 订单状态)SELECT(random() * 1000)::int AS customer_id,           -- 随机生成客户IDgenerate_series(start_date, end_date, '1 day'::interval)::date AS order_date, -- 从起始日期到结束日期生成日期系列(random() * 500 + 50)::numeric(10, 2) AS amount, -- 随机生成订单金额,范围在50到550之间CASE WHEN random() > 0.5 THEN 'completed' ELSE 'pending' END AS status -- 随机生成订单状态FROM generate_series(start_date, end_date, '1 day'::interval) -- 生成日期系列LIMIT num_rows;   -- 限制插入的记录数
END;
$$;

5.4、插入数据到表格

SELECT insert_random_data('2021-01-01', '2021-12-30', 50000);
SELECT insert_random_data('2022-01-01', '2022-12-30', 50000);test=# select count(*) from sales_orders;count  
--------100000
(1 row)test=# 

5.5、断开分区

alter table sales_orders detach partition sales_orders_2021;test=# select count(*) from sales_orders;count 
-------50000
(1 row)

5.6、再创建与原来那个分区表一样的表结构,添加两个分区

这种情况一般应用于,如给大表分区后的某个分区还是特别大,可以弄个二级分区,就像结构树那样嵌套下去

-- 创建2021年订单分区表
CREATE TABLE sales_orders_2021_p (order_id SERIAL,                    -- 订单ID,自动递增customer_id INT NOT NULL,           -- 客户ID,不允许为空order_date DATE NOT NULL,           -- 订单日期,不允许为空amount NUMERIC(10, 2) NOT NULL,     -- 订单金额,精确到小数点后两位,不允许为空status VARCHAR(20),                 -- 订单状态,例如 'completed' 或 'pending'CONSTRAINT sales_orders_2021_p_pkey PRIMARY KEY (order_id, order_date)  -- 主键约束
)
PARTITION BY RANGE (order_date);       -- 根据订单日期进行范围分区--新建两个分区
create table sales_orders_2021_p_1 partition of sales_orders_2021_p for VALUES FROM ('2021-01-01') TO ('2021-5-31');
create table sales_orders_2021_p_2 partition of sales_orders_2021_p for VALUES FROM ('2021-5-31') TO ('2021-12-31');

5.7、把原先那个总表的2021分区表数据导入现在分区表

insert into sales_orders_2021_p select * from sales_orders_2021;

5.8、把这个分区表加入到到之前的分区表分区中

test=# select count(*) from sales_orders;count 
-------50000
(1 row)alter table sales_orders ATTACH PARTITION sales_orders_2021_p FOR VALUES FROM ('2021-01-01') TO ('2021-12-31');test=# select count(*) from sales_orders;count  
--------100000
(1 row)

5.9、查看当前的分区表信息

--以下就是带有二级分区的分区表
test=# \d+ sales_orders;Partitioned table "public.sales_orders"Column    |         Type          | Collation | Nullable |                    Default                     | Storage  | Compression | Stats target | Description 
-------------+-----------------------+-----------+----------+------------------------------------------------+----------+-------------+--------------+-------------order_id    | integer               |           | not null | nextval('sales_orders_order_id_seq'::regclass) | plain    |             |              | customer_id | integer               |           | not null |                                                | plain    |             |              | order_date  | date                  |           | not null |                                                | plain    |             |              | amount      | numeric(10,2)         |           | not null |                                                | main     |             |              | status      | character varying(20) |           |          |                                                | extended |             |              | 
Partition key: RANGE (order_date)
Indexes:"sales_orders_pkey" PRIMARY KEY, btree (order_id, order_date)
Partitions: sales_orders_2021_p FOR VALUES FROM ('2021-01-01') TO ('2021-12-31'), PARTITIONED,sales_orders_2022 FOR VALUES FROM ('2022-01-01') TO ('2022-12-31'),sales_orders_2023_q1_q2 FOR VALUES FROM ('2023-01-01') TO ('2023-06-30'),sales_orders_2023_q3_q4 FOR VALUES FROM ('2023-07-01') TO ('2023-12-31'),sales_orders_2024 FOR VALUES FROM ('2024-01-01') TO ('2024-12-31')
test=# \d+;List of relationsSchema |               Name               |       Type        | Owner | Persistence | Access method |    Size    | Description 
--------+----------------------------------+-------------------+-------+-------------+---------------+------------+-------------public | sales_orders                     | partitioned table | fbase | permanent   |               | 0 bytes    | public | sales_orders_2021                | table             | fbase | permanent   | heap          | 3048 kB    | public | sales_orders_2021_p              | partitioned table | fbase | permanent   |               | 0 bytes    | public | sales_orders_2021_p_1            | table             | fbase | permanent   | heap          | 1248 kB    | public | sales_orders_2021_p_2            | table             | fbase | permanent   | heap          | 1768 kB    | public | sales_orders_2021_p_order_id_seq | sequence          | fbase | permanent   |               | 8192 bytes | public | sales_orders_2022                | table             | fbase | permanent   | heap          | 2976 kB    | public | sales_orders_2023_q1_q2          | table             | fbase | permanent   | heap          | 16 kB      | public | sales_orders_2023_q3_q4          | table             | fbase | permanent   | heap          | 16 kB      | public | sales_orders_2024                | table             | fbase | permanent   | heap          | 16 kB      | public | sales_orders_order_id_seq        | sequence          | fbase | permanent   |               | 8192 bytes | 
(11 rows)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/52753.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端开发必备小技巧】前端代码规范Vue篇

文章目录 &#x1f7e2; 前端代码规范&#x1f7e2; 一、前端代码规范Vue篇&#x1f449;1、Vue编码基础&#x1f449;1.1、组件规范&#x1f449;1.2、模板中使用简单的表达式&#x1f449;1.3、指令都使用缩写形式&#x1f449;1.4、 标签顺序保持一致&#x1f449;1.5、必须…

【Kotlin设计模式】Kotlin实现适配器模式

前言 适配器模式(Adapter Pattern)的核心将某个类的接口转换成客户端期望的另一个接口表示&#xff0c;使得客户端能够通过自己期望的接口与不兼容的类进行交互。适配器模式有三种实现方式&#xff0c;分别是类适配器模式、对象适配器模式、 接口适配器模式。 我们假设有个视频…

mysql 创建数据库和表,以及对表字段的操作

目录 前言1. 创建数据库2. 选择数据库3. 创建表4. 添加字段5. 修改字段6. 删除字段总结 前言 在MySQL中&#xff0c;你可以通过SQL语句来创建数据库、表&#xff0c;以及在表中添加、修改、删除字段。下面我将分别展示这些操作的示例。 1. 创建数据库 首先&#xff0c;你需要…

3D Tiles的4x4的仿射变换矩阵

前言 项目需要&#xff0c;使用Cesium技术&#xff0c;把STL格式模型加载进去。 一、格式转换 第一步&#xff0c;先将STL文件转换为glTF格式 第二步&#xff0c;将glTF文件转换为3D Tiles格式&#xff0c;使用Cesium ion 二、矩阵整体结构 这个矩阵是一个4x4的仿射变换矩阵&…

3154. 到达第 K 级台阶的方案数

3154. 到达第 K 级台阶的方案数 题目链接&#xff1a;3154. 到达第 K 级台阶的方案数 代码如下&#xff1a; //参考链接&#xff1a;https://leetcode.cn/problems/find-number-of-ways-to-reach-the-k-th-stair/solutions/2782792/liang-chong-fang-fa-ji-yi-hua-sou-suo-zu…

LeetCode题练习与总结:单词搜索Ⅱ--212

一、题目描述 给定一个 m x n 二维字符网格 board 和一个单词&#xff08;字符串&#xff09;列表 words&#xff0c; 返回所有二维网格上的单词 。 单词必须按照字母顺序&#xff0c;通过 相邻的单元格 内的字母构成&#xff0c;其中“相邻”单元格是那些水平相邻或垂直相邻…

中智科学技术评价研究中心与中企数研究院实现全面合作

8月29日&#xff0c;中智科学技术评价研究中心与《中国企业报》集团数字化发展研究院在北京顺喜山庄成功举办“数字经济GBC生态系统管理平台”项目实施落地座谈会及研究院高层管理集训班&#xff0c;并签署了项目合作协议。此次合作标志着双方将在“数字中国发展战略”的大背景…

人工智能领域正经历模型规模变革,小型语言模型(SLM)崛起,挑战“规模至上”观念。

在人工智能领域&#xff0c;一场关于模型规模的深刻变革正在悄然发生。长久以来&#xff0c;科技巨头们热衷于庞大语言模型&#xff08;LLM&#xff09;的开发竞赛&#xff0c;但如今&#xff0c;小型语言模型&#xff08;SLM&#xff09;正以其独特的优势逐步崭露头角&#xf…

WordNet介绍——一个英语词汇数据库

传统语义知识库最常见的更新方法是依赖人工手动更新&#xff0c;使用这种更新方法的语义知识库包括最早的 WordNet、FrameNet和 ILD&#xff0c;以及包含丰富内容的 ConceptNet和 DBPedia。此类语义知识库的特点是以单词作为语义知识库的基本构成元素&#xff0c;以及使用预先设…

Linux安装Hadoop(单机版)详细教程

目录 一、JDK安装 1、下载JDK安装包 2、解压下载的JDK安装包 3、移动并重命名JDK包 4、配置Java环境变量 5、验证安装是否成功 二、Hadoop安装 1、下载Hadoop安装包 2、解压Hadoop安装包 3、配置Hadoop环境变量 4、修改配置文件 5、验证Hadoop是否安装成功 三&…

代码随想录——回文子串(Leetcode 647)

题目链接 我的题解&#xff08;双指针&#xff09; 思路&#xff1a; 当然&#xff0c;以下是对您提供的代码的解释&#xff1a; class Solution {public int countSubstrings(String s) {// 初始化回文子字符串的数量int count 0;// 遍历字符串的每个字符&#xff0c;使用…

sicp每日一题[1.38]

Exercise 1.38 In 1737, the Swiss mathematician Leonhard Euler published a memoir D e F r a c t i o n i b u s C o n t i n u i s De\ Fractionibus\ Continuis De Fractionibus Continuis, which included a continued fraction expansion for e − 2 e − 2 e−2, wh…

NCH DrawPad Pro for Mac/Win:强大的图像编辑处理软件

NCH DrawPad Pro for Mac/Win是一款功能全面的图像编辑和设计软件&#xff0c;专为Mac和Windows用户设计。它不仅适用于专业设计师&#xff0c;也深受业余爱好者和创意工作者的喜爱。DrawPad Pro凭借其丰富的绘图工具、强大的编辑功能和便捷的模板库&#xff0c;为用户提供了卓…

Android JNI 设置环境变量

setenv 在 Android JNI 中&#xff0c;setenv 是一个 C 标准库函数&#xff0c;用于设置环境变量。你可以通过 JNI 调用这个函数来设置或修改环境变量&#xff1a; #include <jni.h> #include <cstdlib> // For setenvextern "C" JNIEXPORT void JNICA…

OpenCV杂项图像变换(2)线性混合函数blendLinear()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 执行两个图像的线性混合&#xff1a; dst ( i , j ) weights1 ( i , j ) ∗ src1 ( i , j ) weights2 ( i , j ) ∗ src2 ( i , j ) \texttt{…

策略模式+模版方法模式+简单工厂模式混用优化代码复杂分支问题

说明 这篇博客是在复杂场景使用策略和工厂模式代替分支语句升级版&#xff0c;增加了模版方法模式。将支付类的公共逻辑抽取到模板类中&#xff0c;使整个支付逻辑更加灵活&#xff0c;进一步优化了代码结构&#xff0c;提升了软件的可维护性和可读性。 流程图如下 先看一遍流…

.NET 多版本兼容的精美 WinForm UI控件库

目录 前言 项目介绍 项目使用 项目源码 项目案例 项目组件 项目地址 前言 有粉丝小伙伴在后台留言咨询有没有WinForm 控件库推荐&#xff0c;现在就给安排上。 .NET 平台进行 Windows 应用程序开发的我们来说&#xff0c;找一个既美观又实用的 WinForm UI 控件库至关重…

STM32通过ADM3222完成UART转232通信电平转换

1、简介 单片机默认串口输出电平是UART信号,但是在实际项目中经常需要将其转换成232电平,此时就需要ADM3222芯片来完成电平的转换,下面对使用过程进行总结。 2、硬件电路 从上图中可以看到芯片需要对1、18进行配置才能进行工作,通过查阅手册可知,1引脚需要配置低电平,…

Java算法之循环排序(Cyclic Sort)

简介 循环排序&#xff08;Cyclic Sort&#xff09;是一种最小化移动次数的原地排序算法&#xff0c;它利用了数组元素的初始顺序。如果一个元素不在它最终应该在的位置&#xff0c;循环排序会找到这个元素应该在的位置&#xff0c;并将该位置的元素交换过来&#xff0c;直到这…

【react】常用插件收集

Redux状态管理 - reduxjs/toolkit 、 react-redux react-router-dom: 路由 antd-mobile: 移动端组件库 axios:请求插件 dayjs: 时间处理 classnames: class类名处理 Lodash&#xff1a;遍历数据等 地址→ "dependencies": {"reduxjs/toolkit": &quo…