【HashMap源码学习】

HashMap的底层结构

HashMap是基于分离链表法解决散列冲突的动态散列表。

1、在jdk7中,使用的是“数组 + 链表”,发生散列冲突的时候键值对会用头插法添加到单链表中;

2、在jdk8中,使用的是“数组 + 链表 + 红黑树”,发生散列冲突的时候会使用尾插法添加到单链表中。如果链表的长度大于8且散列表容量大于64的时候,会将链表树化为红黑树。在扩容再散列时,如果红黑树的长度低于6则会还原为链表。

     1)HashMap的数组长度保证是2的整数次幂,且默认数组容量是16,默认装载因子是0.75,扩容阈值是12,树化阈值是8(当一个桶中的元素个数大于等于8时进行树化),还原阈值是6(当一个桶中的元素个数小于等于6时把树转化为链表)。2)hashmap的 key 和 value 都支持null,key为null的键值对会直接映射到数组下表为0的桶中(因为null的hash值是0,取余映射到数组下标后也是table[0]的桶)。3)首次加入数据如果数组为空,则扩容,默认数组容量是16;数组容量到达阈值(12-24...)会扩容至原来容量2倍;链表长度大于8且数组容量小于64时,同样会扩容至原来容量2倍,数组容量到64时则会树化。 

源码分析

1、putVal 存放数据

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {HashMap.Node<K, V>[] tab;HashMap.Node<K, V> p;int n, i;if ((tab = table) == null || (n = tab.length) == 0)// 如果数组为null或长度为0,则进行扩容:首次扩容数组长度为16,阈值为12n = (tab = resize()).length;if ((p = tab[i = (n - 1) & hash]) == null)// 如果数组 tab[i]位置上是null,则将加入的 key-value 放入此数组节点tab[i] = newNode(hash, key, value, null);else {// 数组 tab[i]位置上有值,即 pHashMap.Node<K, V> e;K k;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))// tab[i]上元素的hash值和key值 和 新加入元素的hash值 key值都相同; 则 p保存到e中用于后续修改value值e = p;else if (p instanceof TreeNode) // 红黑树节点情况e = ((HashMap.TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);else {  // 单链表情况,尾插for (int binCount = 0; ; ++binCount) {if ((e = p.next) == null) { // p的下一节点是空的,则尾插新元素p.next = newNode(hash, key, value, null);if (binCount >= TREEIFY_THRESHOLD - 1)// 链表上大于8个元素了,树化(数组长度大于64后,才开始树化,否则仅扩容16-32-64)treeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))// 新加入的元素 和 单链表上元素 hash、key值都相同break;p = e; // 前有e = p.next,即 p指向p的下一个节点}}if (e != null) { // e不为空,则新加入的元素 hash、key 都重复了,则新值替换旧值V oldValue = e.value;if (!onlyIfAbsent || oldValue == null)e.value = value;// 访问节点回调(用于 LinkedHashMap,默认为空实现)afterNodeAccess(e);return oldValue;}}++modCount;if (++size > threshold)// hashmap的元素个数大于阈值(12-24....)时,则进行扩容, 扩容后长度是原来长度的两倍resize();afterNodeInsertion(evict);return null;}

2、扩容

final Node<K,V>[] resize() {// 定义 旧数组 变量Node<K,V>[] oldTab = table;// 如果数组为 null 则旧容量置为0// 如数组不为 null 则旧容量为置为 数组的长度(划重点:数组的长度)int oldCap = (oldTab == null) ? 0 : oldTab.length;// 定义 旧扩容阈值 变量int oldThr = threshold;// 定义 新容量 新扩容阈值 变量为 0int newCap, newThr = 0;// 1、第一步// 如果旧容量 > 0(表示不是第一次添加元素,数组里面有元素)if (oldCap > 0) {// 极端情况:// 如果旧容量 >= 最大容量,则此时无法扩容,将扩容阈值设置为整数最大值,直接返回旧容量// static final int MAXIMUM_CAPACITY = 1 << 30;if (oldCap >= MAXIMUM_CAPACITY) {threshold = Integer.MAX_VALUE;return oldTab;}// 普通情况:// oldCap << 1 旧容量扩容为原来的两倍// (新容量 < 最大容量) 且 (旧容量 >= 默认容量)else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)// 扩容阈值扩大为原来的两倍newThr = oldThr << 1; // double threshold}// 使用非无参构造方法创建的map,第一次插入元素会走到这里else if (oldThr > 0)// 初始化容量 置为 扩容阈值newCap = oldThr;// 调用无参构造方法创建的map,第一次插入元素会走到这里else {// static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16// 新容量 默认为 16newCap = DEFAULT_INITIAL_CAPACITY;// 新扩容阈值 = 默认装载因子 * 默认初始化容量newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}// 带初始容量和负载因子的构造方法走这里if (newThr == 0) {// 使用容量乘以负载因子计算扩容阈值float ft = (float)newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}// 最终计算的扩容阈值threshold = newThr;// 2、第二步// 使用新容量 创建新数组Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];table = newTab;// 如果旧数组不等于 null,则将旧数组上的键值对 再散列到新数组上if (oldTab != null) {// 遍历旧数组上的每个桶for (int j = 0; j < oldCap; ++j) {Node<K,V> e;// 如果此下标处的桶不为nullif ((e = oldTab[j]) != null) {// 传递给 e 后,置为空oldTab[j] = null;// 如果这个桶中只有一个元素if (e.next == null)// 则计算它在新桶中的位置并把它搬移到新桶中(也就是 直接再散列)newTab[e.hash & (newCap - 1)] = e;// 如果是红黑树else if (e instanceof TreeNode)// 以红黑树的方式再散列((TreeNode<K,V>)e).split(this, newTab, j, oldCap);// 以链表的形式再散列else { // preserve orderNode<K,V> loHead = null, loTail = null;Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;do {next = e.next;// 如果元素的哈希值与旧数组长度的按位与运算结果为0,将元素添加到低位链表中。// 如果低位链表为空,将该元素作为链表的头节点,否则将该元素添加到低位链表的尾部。if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}// 如果元素的哈希值与旧数组长度的按位与运算结果不为0,将元素添加到高位链表中。// 如果高位链表为空,将该元素作为链表的头节点,否则将该元素添加到高位链表的尾部。else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);if (loTail != null) {loTail.next = null;newTab[j] = loHead;}if (hiTail != null) {hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}return newTab;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/50766.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python】成功解决: [Errno 24] Too many open files

【Python】成功解决: [Errno 24] Too many open files 在Python编程中&#xff0c;遇到[Errno 24] Too many open files错误是一个常见的系统资源限制问题。这个错误表明你的程序尝试打开的文件数量超过了操作系统允许的最大文件描述符数量。在Linux和Unix系统中&#xff0c;每…

昇思25天学习打卡营第1天|简单深度学习

前言 昇思MindSpore是一个全场景深度学习框架&#xff0c;旨在实现易开发、高效执行、全场景统一部署三大目标。 其中&#xff0c;易开发表现为API友好、调试难度低&#xff1b;高效执行包括计算效率、数据预处理效率和分布式训练效率&#xff1b;全场景则指框架同时支持云、边…

从 Pandas 到 Polars 三十八:Polars 的“瘦身”功能

Polars 有一个内置工具来进行 dtype 瘦身。调用 shrink_dtype 表达式&#xff0c;它会根据列中的数据将列转换为需要最少内存量的 dtype。 shrink_dtype 是 Polars 中一个非常有用的函数&#xff0c;它用于优化 DataFrame 中列的数据类型&#xff0c;以减小内存占用并可能提高…

react子组件向父组件传参

在React中&#xff0c;子组件向父组件传参&#xff08;或称为“通信”&#xff09;通常通过事件回调的方式实现。父组件向子组件传递一个函数作为props&#xff0c;子组件在需要时调用这个函数&#xff0c;并可以通过参数的形式向父组件传递数据。 下面是一个简单的例子来说明…

C++之map和set封装以及哈希(unordered_map和unordered_set)的封装(仅代码)

个人主页&#xff1a;点我进入主页 专栏分类&#xff1a;C语言初阶 C语言进阶 数据结构初阶 Linux C初阶 C进阶​ ​​​​算法 欢迎大家点赞&#xff0c;评论&#xff0c;收藏。 一起努力&#xff0c;一起奔赴大厂 目录 一. map和set封装 1.1红黑树 1.2map …

fatal: refusing to merge unrelated histories

出现本地仓库和远程仓库的代码合并不兼容问题&#xff0c;解决方法&#xff1a; 添加--allow-unrelated-histories&#xff0c;让git允许提交不关联的历史代码。 成功提交&#xff1a;

Nuitka,一个超厉害的 Python 库

在众多高级编程语言中,Python 以其简洁的语法和强大的功能深受广大开发者的喜爱。然而,Python 程序的执行速度常常成为其被诟病之处。今天,我们要介绍的 Nuitka,正是一款可以将 Python 代码编译成 C++ 代码的工具,从而大幅提升程序执行效率。那么,Nuitka 究竟是什么呢?它…

python基础知识点(蓝桥杯python科目个人复习计划75)

第一题&#xff1a;ip补充 题目描述&#xff1a; 小蓝的ip地址为192.168.*.21&#xff0c;其中*是一个数字&#xff0c;请问这个数字最大可能是多少&#xff1f; import os import sys# 请在此输入您的代码 print("255") 第二题&#xff1a;出现最多的字符 题目描…

gitee的fork

通过fork操作&#xff0c;可以复制小组队长的库。通过复制出一模一样的库&#xff0c;先在自己的库修改&#xff0c;最后提交给队长&#xff0c;队长审核通过就可以把你做的那一份也添加入库 在这fork复制一份到你自己的仓库&#xff0c;一般和这个项目同名 现在你有了自己的库…

git 学习总结

文章目录 一、 git 基础操作1、工作区2、暂存区3、本地仓库4、远程仓库 二、git 的本质三、分支git 命令总结 作者: baron 一、 git 基础操作 如图所示 git 总共有几个区域 工作区, 暂存区, 本地仓库, 远程仓库. 1、工作区 存放项目代码的地方&#xff0c;他有两种状态 Unm…

Vue3时间选择器datetimerange在数据库存开始时间和结束时间

♥️作者&#xff1a;小宋1021 &#x1f935;‍♂️个人主页&#xff1a;小宋1021主页 ♥️坚持分析平时学习到的项目以及学习到的软件开发知识&#xff0c;和大家一起努力呀&#xff01;&#xff01;&#xff01; &#x1f388;&#x1f388;加油&#xff01; 加油&#xff01…

什么是埋点?前端如何埋点?

什么是埋点 “埋点” 是一种在应用程序或网站中插入代码的技术&#xff0c;用于收集用户行为数据或特定事件的信息。它是用于分析和监控用户行为、应用性能和其他关键指标的一种常用方法。通过在特定位置插入代码或调用特定的 API&#xff0c;开发人员可以捕获有关用户如何与应…

a,a,a【0】,a【0】,指针解析数组,用作(左值,右值)的区别

a&#xff0c;&a&#xff0c;a【0】&#xff0c;&a【0】&#xff0c;指针解析数组&#xff0c;用作&#xff08;左值&#xff0c;右值&#xff09;的区别

大数据-49 Redis 缓存问题中 穿透、雪崩、击穿、数据不一致、HotKey、BigKey

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…

《GPT-4o mini:开启开发与创新的新纪元》

在科技发展的快速进程中&#xff0c;OpenAI 推出的 GPT-4o mini 模型如同一阵春风&#xff0c;给开发者们带来了新的希望和机遇。它以其卓越的性能和极具吸引力的价格&#xff0c;成为了行业内热议的焦点。 当我首次听闻 GPT-4o mini 的消息时&#xff0c;内心充满了好奇与期待…

解锁Conda配置的秘密:conda config --get命令全指南

&#x1f511; 解锁Conda配置的秘密&#xff1a;conda config --get命令全指南 Conda是一个功能强大的包管理器和环境管理器&#xff0c;它允许用户通过配置文件来自定义其行为。有时&#xff0c;了解当前的配置状态对于诊断问题、优化设置或确保环境的一致性至关重要。本文将…

Linux下学习Python包管理器Poetry教程 零基础入门到精通

Poetry [官网 - Poetry] https://python-poetry.org/ 安装 pip install poetry简单使用 初始化 poetry 项目 cd ~ && mkdir demo poetry init管理虚拟环境 poetry 预设了很多自己的虚拟环境配置&#xff0c;这些配置可以通过 poetry config 进行修改 当用户在执…

使用git工具管理泰山派内核源码目录及抽打补丁简易流程

目录 使用git工具管理泰山派内核源码目录及抽打补丁简易流程 一、使用git维护源码 二、git 常用的一些操作 三、抽补丁 四、打补丁 五、补充 使用git工具管理泰山派内核源码目录及抽打补丁简易流程 最近&#xff0c;在做linux开发的过程中入手了一块泰山派RK3566的开发板…

嵌入式初学-C语言-前言

概述 C语言是一种计算机编程语言&#xff0c;我们是利用代码来控制计算机的运行&#xff0c;从而达到某种目的&#xff0c;我们 就很有必要了解计算机的运行原理。 计算机组成 OS 应用程序 计算机硬件 基本组成&#xff1a; 输入设备&#xff1a;输入数据给计算机处理&…

详解Mysql InnoDB引擎 04

文章目录 1. InnoDB 简介2. 逻辑存储结构2.1 表空间 idb文件2.2 段2.3 区 1M2.4 页 16KB2.5 行 3. 架构3.1 内存结构3.1.1 Buffer Pool 缓冲池3.1.2 Change Buffer 更改缓冲区3.1.3 Adaptive Hash Index3.1.4 Log Buffer 3.2 磁盘结构 4. 后台线程5. 事务原理5.1 redo log 重做…