禁忌搜索算法(Tabu Search,TS)及其Python和MATLAB实现

禁忌搜索算法是一种现代启发式搜索方案,主要用于解决组合优化问题。该算法由George F. Lugeral于1986年首次提出,旨在增强局部搜索算法的性能,避免其陷入局部最优解。禁忌搜索利用一个称为“禁忌表”的数据结构,记住最近访问的解决方案,从而禁止在短期内回到这些解,借此探索更广泛的解空间并寻求更优解。

### 一、背景

在许多组合优化问题中,比如旅行商问题、调度问题、背包问题等,寻找最优解往往是非常复杂的。传统的启发式算法,如爬山算法,往往容易陷入局部最优解,导致整体解的优化性能不足。禁忌搜索在此背景下应运而生,目的在于通过记忆和策略来引导搜索过程,从而跳出局部最优化的困境,接近全局最优解。

### 二、原理

禁忌搜索算法的核心思想是利用禁忌表记录近期的解,在搜索过程中避免再次访问这些解。该算法可视为改进的局部搜索,允许进行“非对称”的搜索,即尽管某些解在短期内被禁止,算法仍可以探索其他潜在的解。

#### 1. 解决方案表示
通常用一个向量或一个集合表示问题的解。例如,在旅行商问题中,可以用一个城市的排列来表示一个路线解。

#### 2. 邻域结构
一个解决方案的邻域是通过对当前解进行小的变更而形成的一组解决方案。邻域结构的设计非常重要,它直接影响到搜索的效率和效果。

#### 3. 禁忌表
禁忌表是禁忌搜索的重要组成部分,主要用于记录一定数量的“禁忌”解。它通常采用先进先出(FIFO)策略,删除最早的纪录,以保持大小恒定。禁忌表的长度是一个参数,影响着算法的性能。

#### 4. 目标函数
目标函数用于评估每个解决方案的质量。禁忌搜索算法通过最大化或最小化目标函数,来引导搜索过程。

### 三、实现过程

禁忌搜索的实现过程一般包括以下几个步骤:

#### 1. 初始化
- 选定初始解,并计算其目标函数值。
- 初始化禁忌表为空。
- 设定禁忌表的大小和最大迭代次数。

#### 2. 主循环
在指定的迭代次数内执行以下步骤:

- **邻域生成**:根据当前解生成解的邻域。
- **评估邻域解**:计算邻域中所有解的目标函数值,并找出最优解。
- **禁忌检查**:检查该邻域解是否在禁忌表中。如果是,则判断是否是最优解;如果不是,则更新当前解为邻域最优解。
- **更新禁忌表**:将当前解或某个特定的属性(如交换的元素)加入禁忌表,确保在之后的搜索中不再回到该解。
- **记录最优解**:如果当前解优于历史记录,更新最优解。
  
#### 3. 终止条件
- 根据事先设定的终止条件,如达到最大迭代次数或在一定时间内未找到新解,来结束搜索。

#### 4. 输出结果
- 输出最优解及其目标函数值。

### 四、流程示意图

```
开始 → 初始化 (初始解、目标函数、禁忌表) →
  ↓
主循环 (达到最大迭代次数?)
  ↙               ↘
是                否
  ↓                ↓
输出结果       邻域生成 →
                评估邻域解 →
                禁忌检查 →
                更新禁忌表 →
                记录最优解 →
                返回主循环
```

### 五、算法性能分析

禁忌搜索算法的性能常常取决于多个因素,如禁忌表的大小、邻域结构的设计以及目标函数的计算复杂度。良好的邻域结构和适当的禁忌表大小能够在巨大的解空间中有效地引导搜索过程。此外,禁忌搜索的多样性和灵活性使其可以与其他算法(如遗传算法、模拟退火等)结合,形成混合算法。

### 六、应用领域

禁忌搜索被广泛应用于各种领域,包括但不限于:

1. **旅行商问题**:解决路径最优化。
2. **调度问题**:如制造与任务调度。
3. **资源分配**:最大化利益或最小化成本。
4. **图着色问题**:解决图的最小着色问题。
5. **路径规划**:自动驾驶与机器人导航等领域。

### 七、结论

禁忌搜索算法是一种强大的优化工具,能够有效地解决大量组合优化问题。通过使用禁忌表、邻域结构等机制,它克服了传统局部搜索的局限性,探索更广泛的解空间。禁忌搜索算法的灵活性及其与其他方法的结合能力,使得其在实际应用中具有重要的价值。随着计算技术的发展,禁忌搜索算法仍将继续在各类优化问题中发挥重要作用。

 

Python:

import numpy as np  

 

class TabuSearch:  

    def __init__(self, objective_function, initial_solution, tabu_size, max_iterations):  

        self.objective_function = objective_function  

        self.current_solution = initial_solution  

        self.best_solution = initial_solution  

        self.tabu_list = []  

        self.tabu_size = tabu_size  

        self.max_iterations = max_iterations  

 

    def find_neighbors(self, solution):  

        neighbors = []  

        # Example of generating neighbors by swapping two elements  

        for i in range(len(solution)):  

            for j in range(i + 1, len(solution)):  

                neighbor = solution.copy()  

                neighbor[i], neighbor[j] = neighbor[j], neighbor[i]  

                neighbors.append(neighbor)  

        return neighbors  

 

    def run(self):  

        for _ in range(self.max_iterations):  

            neighbors = self.find_neighbors(self.current_solution)  

            best_neighbor = None  

            best_value = float('inf')  

 

            for neighbor in neighbors:  

                if neighbor not in self.tabu_list:  

                    neighbor_value = self.objective_function(neighbor)  

                    if neighbor_value < best_value:  

                        best_value = neighbor_value  

                        best_neighbor = neighbor  

 

            if best_neighbor is not None:  

                self.current_solution = best_neighbor  

                if self.objective_function(self.current_solution) < self.objective_function(self.best_solution):  

                    self.best_solution = self.current_solution  

 

                self.tabu_list.append(self.current_solution)  

                if len(self.tabu_list) > self.tabu_size:  

                    self.tabu_list.pop(0)  

 

        return self.best_solution, self.objective_function(self.best_solution)  

 

 

# Example usage  

def objective_function(solution):  

    return sum(solution) # Minimize the sum for example  

 

initial_solution = [3, 1, 4, 1, 5]  

tabu_search = TabuSearch(objective_function, initial_solution, tabu_size=5, max_iterations=100)  

best_solution, best_value = tabu_search.run()  

 

print("Best Solution:", best_solution)  

print("Best Value:", best_value)

 

MATLAB:

classdef TabuSearch  

    properties  

        objective_function  

        current_solution  

        best_solution  

        tabu_list  

        tabu_size  

        max_iterations  

    end  

    

    methods  

        function obj = TabuSearch(objective_function, initial_solution, tabu_size, max_iterations)  

            obj.objective_function = objective_function;  

            obj.current_solution = initial_solution;  

            obj.best_solution = initial_solution;  

            obj.tabu_list = {};  

            obj.tabu_size = tabu_size;  

            obj.max_iterations = max_iterations;  

        end  

        

        function neighbors = find_neighbors(obj, solution)  

            neighbors = [];  

            n = length(solution);  

            % Generate neighbors by swapping two elements  

            for i = 1:n  

                for j = i+1:n  

                    neighbor = solution;  

                    neighbor([i, j]) = neighbor([j, i]);  

                    neighbors = [neighbors; neighbor];  

                end  

            end  

        end  

        

        function [best_solution, best_value] = run(obj)  

            for iter = 1:obj.max_iterations  

                neighbors = obj.find_neighbors(obj.current_solution);  

                best_neighbor = [];  

                best_value = Inf;  

                

                for i = 1:size(neighbors, 1)  

                    neighbor = neighbors(i, :);  

                    if ~ismember(neighbor, obj.tabu_list, 'rows')  

                        neighbor_value = obj.objective_function(neighbor);  

                        if neighbor_value < best_value  

                            best_value = neighbor_value;  

                            best_neighbor = neighbor;  

                        end  

                    end  

                end  

                

                if ~isempty(best_neighbor)  

                    obj.current_solution = best_neighbor;  

                    if obj.objective_function(obj.current_solution) < obj.objective_function(obj.best_solution)  

                        obj.best_solution = obj.current_solution;  

                    end  

                    

                    obj.tabu_list{end+1} = obj.current_solution; %#ok<*AGROW>  

                    if length(obj.tabu_list) > obj.tabu_size  

                        obj.tabu_list(1) = [];  

                    end  

                end  

            end  

            best_solution = obj.best_solution;  

            best_value = obj.objective_function(best_solution);  

        end  

    end  

end  

 

% Example usage  

objective_function = @(solution) sum(solution); % Minimize the sum for example  

initial_solution = [3, 1, 4, 1, 5];  

tabu_search = TabuSearch(objective_function, initial_solution, 5, 100);  

[best_solution, best_value] = tabu_search.run();  

 

disp('Best Solution:');  

disp(best_solution);  

disp('Best Value:');  

disp(best_value);

说明

邻域生成:在 Python 和 MATLAB 示例中,使用交换两个元素的方法生成邻域解。根据具体问题,其他邻域生成策略也可以应用。

目标函数:示例中使用的目标函数是求解数组元素的和。可以根据需要替换为其他目标函数。

禁忌列表:用于存放最近访问过的解,以避免将它们纳入后续搜索。

这两个实现提供了禁忌搜索的基本框架,可以根据实际需求修改和扩充。具体的优化问题和目标函数可以自行设计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/50424.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Stable Diffusion 使用详解(3)---- ControlNet

背景 炼丹师在AI绘画的过程中&#xff0c;由于Stable Diffusion的原理是水滴式的扩散作图原理&#xff0c;其实在前面也有提到&#xff0c;他的发挥是‘不稳定’的&#xff0c;因为你没有办法做到精确控制&#xff0c;只能说是大致符合你的预期。你不能总依赖抽卡固定随机数种…

【HDFS】HADOOP-11552.Allow handoff on the server side for RPC requests

今天来分析一下 HADOOP-11552. Allow handoff on the server side for RPC requests. 这个之前没有使用场景,也没有细看,所以一直不明白它到底是做什么的? 最近在做Router RPC异步化,涉及到这个feature的使用,因此决定深入学习一下,特此记录。 根据ISSUE的描述,HDFS的…

Laravel Horizon:队列管理与监控的高级指南

引言 在现代Web应用开发中&#xff0c;任务队列是一个常见的需求&#xff0c;用于处理耗时的任务异步执行。Laravel提供了一个强大的队列系统&#xff0c;而Horizon是Laravel的一个扩展包&#xff0c;专门用于管理和监控队列。Horizon不仅提供了一个美观的Web界面来监控队列&a…

web学习笔记(八十三)git

目录 1.Git的基本概念 2.gitee常用的命令 3.解决两个人操作不同文件造成的冲突 4.解决两个人操作同一个文件造成的冲突 1.Git的基本概念 git是一种管理代码的方式&#xff0c;广泛用于软件开发和版本管理。我们通常使用gitee&#xff08;码云&#xff09;来云管理代码。 …

重生之我当程序猿外包

第一章 个人介绍与收入历程 我出生于1999年&#xff0c;在大四下学期进入了一家互联网公司实习。当时的实习工资是3500元&#xff0c;公司还提供住宿。作为一名实习生&#xff0c;这个工资足够支付生活开销&#xff0c;每个月还能给父母转1000元&#xff0c;自己留2500元用来吃…

前端开发知识(三)-javascript(对象)

一、JS对象 包括JS已经定义的对象&#xff0c;如&#xff0c;Array,Sting &#xff0c;DOM&#xff0c;BOM等&#xff0c;其中&#xff0c;JSON是用户自定义对象&#xff08;除对象外&#xff0c;还有文本&#xff09;&#xff0c;其他是JS定义 1.Array&#xff1a;数组 数…

Java从入门到精通 (十一) ~ 操作系统、进程和线程

无论做什么&#xff0c;请记住都是为你自己而做&#xff0c;这样就毫无怨言&#xff01;今天&#xff0c;我为自己而活&#xff01;今天&#xff0c;又是美丽的一天&#xff01;早安&#xff0c;朋友&#xff01; 目录 前言 一、操作系统 1. 概念 2. 操作系统的基本功能 3…

@RequiredArgsConstructor详解

RequiredArgsConstructor详解 一、什么是RequiredArgsConstructor? RequiredArgsConstructor是Lombok的一个注解&#xff0c;简化了我们对Autowired书写&#xff0c;我们在写Controller层或者Service层的时候&#xff0c;总是需要注入很多mapper接口或者service接口&#xf…

Java-----栈

目录 1.栈&#xff08;Stack&#xff09; 1.1概念 1.2栈的使用 1.3栈的模拟实现 1.4栈的应用场景 1.5栈、虚拟机栈、栈帧有什么区别呢 1.栈&#xff08;Stack&#xff09; 1.1概念 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操…

【Python】基础学习技能提升代码样例4:常见配置文件和数据文件读写ini、yaml、csv、excel、xml、json

一、 配置文件 1.1 ini 官方-configparser config.ini文件如下&#xff1a; [url] ; section名称baidu https://www.zalou.cnport 80[email]sender ‘xxxqq.com’import configparser # 读取 file config.ini # 创建配置文件对象 con configparser.ConfigParser() # 读…

EEtrade:区块链是什么

区块链&#xff0c;这个近年来频繁出现在我们视野中的术语&#xff0c;已经从一个技术小众圈的词汇&#xff0c;逐渐演变为全球关注的焦点。从比特币的诞生&#xff0c;到如今在金融、供应链、物联网等领域的广泛应用&#xff0c;区块链技术正在深刻地改变着我们的生活。那么&a…

我在高职教STM32——串口通信(5)

大家好,我是老耿,高职青椒一枚,一直从事单片机、嵌入式、物联网等课程的教学。对于高职的学生层次,同行应该都懂的,老师在课堂上教学几乎是没什么成就感的。正因如此,才有了借助 CSDN 平台寻求认同感和成就感的想法。在这里,我准备陆续把自己花了很多心思的教学设计分享…

深入解析 Java 的 switch 语句

深入解析 Java 的 switch 语句 在 Java 编程中&#xff0c;switch 语句是一种常用的控制流语句&#xff0c;它能够根据变量的不同值执行不同的代码块。与 if-else 语句相比&#xff0c;switch 语句在处理多个条件判断时更加简洁和清晰&#xff0c;尤其适用于对一个变量的多个可…

Godot入门 01Godot介绍

Unity大神&#xff0c;YouTube百万游戏开发者的启蒙老师&#xff0c;Brackeys&#xff0c;携 Godot 新手教程&#xff0c;正式回归。 转自&#xff1a;https://youtu.be/LOhfqjmasi0?si4RguI6-pXHZ2mk9K 资产&#xff1a;https://brackeysgames.itch.io/brackeys-platformer-b…

病理多示例学习仓库介绍(持续更新中)

开源项目介绍&#xff1a;MIL_BASELINE 项目概览 MIL_BASELINE 是一个集成了多种多实例学习方法&#xff08;MIL&#xff09;的统一框架库&#xff0c;旨在简化多实例学习模型的开发与应用。它不仅整合了多种MIL方法&#xff0c;还提供了统一的数据集接口和常用的数据集划分方…

C++的编译方式和文件扩展名,C++的头文件,以及C++的标准输入和输出

本文介绍C++的编译方式和文件扩展名,C++的头文件,以及C++的标准输入和输出 1.编译方式和文件扩展名 2.头文件 3.标准输入输出 //vi 01first.cpp#include <iostream>int main(void) {std::cout<<"hello world"<<std::endl;return 0;}1.1编译方式…

【linux】Shell脚本三剑客之grep和egrep命令的详细用法攻略

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…

LK漏感值在网络变压器测试中是否有很大的作用?

今天客户一个产品异常问题&#xff0c;就是说LK漏感值严重超标产品规格书参数&#xff0c;今天我们讲讲这个参数在网络变压器其中的影响。LK漏感值在网络变压器的测试和性能评估中扮演着重要的角色。漏感&#xff0c;或称为漏磁场感抗&#xff0c;是指变压器中不参与主要能量传…

2024.7.24

预处理 在计算机编程和算法设计中&#xff0c;“预处理”通常指在正式的处理或计算之前&#xff0c;对数据或操作进行的一些预先的处理和准备工作。 目的 预处理的目的通常包括&#xff1a; 优化性能&#xff1a;通过提前计算或整理一些数据&#xff0c;减少后续主要计算过…

万字长文说说C#和Rust_Cangjie们的模式匹配

C#11新增列表模式后&#xff0c;这个从C#6就开始的特性&#xff0c;算是拼接好了模式匹配的最后一块拼图。对比Swift、Rust或Cangjie这类先天支持模式匹配的语言&#xff0c;能否一战&#xff1f;今天就来全面battle一下。Swift、Rust和Cangjie的模式匹配&#xff0c;一肪相承&…