昇思25天学习打卡营第20天|CV-ResNet50图像分类

打卡

目录

打卡

图像分类

ResNet网络介绍

数据集准备与加载

可视化部分数据集

残差网络构建

Building Block 结构

代码实现

Bottleneck结构

代码实现

构建ResNet50网络

代码定义

模型训练与评估

可视化模型预测


重点:通过网络层数加深,感知CNN和RNN的差别之处,感知不同残差网络结构的差异(Building Block 和 Bottleneck)。

图像分类

图像分类属于有监督学习类别。本案例主要用ResNet50网络对CIFAR-10数据集进行分类。

ResNet网络介绍

传统的 CNN 是将一系列的卷积层和池化层堆叠,但当网络堆叠到一定深度时,就会出现退化问题,即 网络层数的加深并不能改善网络的训练/测试误差。

ResNet网络提出了残差网络结构 (Residual Network) 来减轻退化问题,使用ResNet网络可以实现搭建较深的网络结构(突破1000层)。研究表明ResNet网络层数越深,其训练误差和测试误差越小 (见 ResNet 论文)。

数据集准备与加载

CIFAR-10数据集 共有60000张32*32的彩色图像,分为10个类别,每类有6000张图,数据集一共有50000张训练图片和10000张评估图片。

如下代码,目前仅支持解析二进制版本的CIFAR-10文件(CIFAR-10 binary version)。

from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"download(url, "./datasets-cifar10-bin", kind="tar.gz", replace=True)

如下代码,用mindspore.dataset.Cifar10Dataset接口来加载数据集,并进行相关图像增强操作。

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
import mindspore.dataset.transforms as transforms
from mindspore import dtype as mstypedata_dir = "./datasets-cifar10-bin/cifar-10-batches-bin"  # 数据集根目录
batch_size = 256  # 批量大小
image_size = 32  # 训练图像空间大小
workers = 4  # 并行线程个数
num_classes = 10  # 分类数量def create_dataset_cifar10(dataset_dir, usage, resize, batch_size, workers):data_set = ds.Cifar10Dataset(dataset_dir=dataset_dir,usage=usage,num_parallel_workers=workers,shuffle=True)trans = []if usage == "train":trans += [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5)]trans += [vision.Resize(resize),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]target_trans = transforms.TypeCast(mstype.int32)# 数据映射操作data_set = data_set.map(operations=trans,input_columns='image',num_parallel_workers=workers)data_set = data_set.map(operations=target_trans,input_columns='label',num_parallel_workers=workers)# 批量操作data_set = data_set.batch(batch_size)return data_set# 获取处理后的训练与测试数据集dataset_train = create_dataset_cifar10(dataset_dir=data_dir,usage="train",resize=image_size,batch_size=batch_size,workers=workers)
step_size_train = dataset_train.get_dataset_size()dataset_val = create_dataset_cifar10(dataset_dir=data_dir,usage="test",resize=image_size,batch_size=batch_size,workers=workers)
step_size_val = dataset_val.get_dataset_size()

可视化部分数据集

import matplotlib.pyplot as plt
import numpy as npdata_iter = next(dataset_train.create_dict_iterator())images = data_iter["image"].asnumpy()
labels = data_iter["label"].asnumpy()
print(f"Image shape: {images.shape}, Label shape: {labels.shape}")# 训练数据集中,前六张图片所对应的标签
print(f"Labels: {labels[:6]}")classes = []with open(data_dir + "/batches.meta.txt", "r") as f:for line in f:line = line.rstrip()if line:classes.append(line)# 训练数据集的前六张图片
plt.figure()
for i in range(6):plt.subplot(2, 3, i + 1)image_trans = np.transpose(images[i], (1, 2, 0))mean = np.array([0.4914, 0.4822, 0.4465])std = np.array([0.2023, 0.1994, 0.2010])image_trans = std * image_trans + meanimage_trans = np.clip(image_trans, 0, 1)plt.title(f"{classes[labels[i]]}")plt.imshow(image_trans)plt.axis("off")
plt.show()

残差网络构建

残差网络结构图如下图所示。

  • 残差网络由两个分支构成:一个主分支,一个shortcuts(图中弧线表示)。两条分支输出的特征矩阵相加得到 𝐹(𝑥) + 𝑥,通过Relu 激活函数后即为残差网络最后的输出。

  • 残差网络结构主要有两种,一种是Building Block,适用于较浅的ResNet网络,如ResNet18和ResNet34;另一种是Bottleneck,适用于层数较深的ResNet网络,如ResNet50、ResNet101和ResNet152。

Building Block 结构

Building Block 结构的參差网络主分支有两层卷积网络结构:

  • 第一层网络以输入channel为64为例,首先通过一个3×3的卷积层,然后通过Batch Normalization层,最后通过Relu激活函数层,输出channel为64;
  • 第二层网络类似,只是少了Relu激活函数层。

注意,主分支与shortcuts输出的特征矩阵相加时,需要保证主分支与shortcuts输出的特征矩阵shape相同。 

代码实现

如下,实现较为朴素,继承 mindspore.nn.Cell 基层网络,构造函数中初始化实现了网络参数定义,construct 中构建了两层网络主分支结构并进行了残差计算。

from typing import Type, Union, List, Optional
import mindspore.nn as nn
from mindspore.common.initializer import Normal# 初始化卷积层与BatchNorm的参数
weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)class ResidualBlockBase(nn.Cell):expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等def __init__(self, in_channel: int, out_channel: int,stride: int = 1, norm: Optional[nn.Cell] = None,down_sample: Optional[nn.Cell] = None) -> None:super(ResidualBlockBase, self).__init__()if not norm:self.norm = nn.BatchNorm2d(out_channel)else:self.norm = normself.conv1 = nn.Conv2d(in_channel, out_channel,kernel_size=3, stride=stride,weight_init=weight_init)self.conv2 = nn.Conv2d(in_channel, out_channel,kernel_size=3, weight_init=weight_init)self.relu = nn.ReLU()self.down_sample = down_sampledef construct(self, x):"""ResidualBlockBase construct."""identity = x  # shortcuts分支out = self.conv1(x)  # 主分支第一层:3*3卷积层out = self.norm(out)out = self.relu(out)out = self.conv2(out)  # 主分支第二层:3*3卷积层out = self.norm(out)if self.down_sample is not None:identity = self.down_sample(x)out += identity  # 输出为主分支与shortcuts之和out = self.relu(out)return out

Bottleneck结构

相比 Building Block 结构,同等情况下,Bottleneck 结构的参数数量更少,更适合层数较深的网络ResNet50使用的残差结构就是Bottleneck

该结构的主分支有三层卷积结构,分别为1×1 的卷积层、3×3卷积层和1×1 的卷积层,其中两层1×1的卷积层起降维、升维的作用。

  • 第一层网络以输入channel为256为例,首先通过数量为64,大小为1×1 卷积核进行降维,然后通过Batch Normalization层,最后通过Relu激活函数层,其输出channel为64;
  • 第二层网络通过数量为64,大小为3×3 的卷积核提取特征,然后通过Batch Normalization层,最后通过Relu激活函数层,其输出channel为64;
  • 第三层通过数量为256,大小1×1 的卷积核进行升维,然后通过Batch Normalization层,其输出channel为256。

同样地,主分支与shortcuts输出的特征矩阵相加时,需要保证主分支与shortcuts输出的特征矩阵shape相同。

代码实现
class ResidualBlock(nn.Cell):expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍def __init__(self, in_channel: int, out_channel: int,stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:super(ResidualBlock, self).__init__()self.conv1 = nn.Conv2d(in_channel, out_channel,kernel_size=1, weight_init=weight_init)self.norm1 = nn.BatchNorm2d(out_channel)self.conv2 = nn.Conv2d(out_channel, out_channel,kernel_size=3, stride=stride,weight_init=weight_init)self.norm2 = nn.BatchNorm2d(out_channel)self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,kernel_size=1, weight_init=weight_init)self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)self.relu = nn.ReLU()self.down_sample = down_sampledef construct(self, x):identity = x  # shortscuts分支out = self.conv1(x)  # 主分支第一层:1*1卷积层out = self.norm1(out)out = self.relu(out)out = self.conv2(out)  # 主分支第二层:3*3卷积层out = self.norm2(out)out = self.relu(out)out = self.conv3(out)  # 主分支第三层:1*1卷积层out = self.norm3(out)if self.down_sample is not None:identity = self.down_sample(x)out += identity  # 输出为主分支与shortcuts之和out = self.relu(out)return out

构建ResNet50网络

ResNet50 网络结构图如下。

输入彩色图像224×224 为例,首先通过数量64,卷积核大小为7×7,stride为2的卷积层conv1,该层输出图片大小为112×112 ,输出channel为64;然后通过一个3×3 的最大下采样池化层,该层输出图片大小为56×56 ,输出channel为64;再堆叠4个残差网络块(conv2_x、conv3_x、conv4_x和conv5_x),此时输出图片大小为7×7 ,输出channel为2048;最后通过一个平均池化层、全连接层和softmax,得到分类概率。

如下代码,make_layer 实现残差块的构建。

def make_layer( last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],channel: int, block_nums: int, stride: int = 1):"""last_out_channel:上一个残差网络输出的通道数。block:残差网络的类别,分别为ResidualBlockBase和ResidualBlock。channel:残差网络输入的通道数。block_nums:残差网络块堆叠的个数。stride:卷积移动的步幅。"""down_sample = None  # shortcuts分支if stride != 1 or last_out_channel != channel * block.expansion:down_sample = nn.SequentialCell([nn.Conv2d(last_out_channel, channel * block.expansion,kernel_size=1, stride=stride, weight_init=weight_init),nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)])layers = []layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))in_channel = channel * block.expansion# 堆叠残差网络for _ in range(1, block_nums):layers.append(block(in_channel, channel))return nn.SequentialCell(layers)

代码定义

ResNet50网络共有5个卷积结构,一个平均池化层,一个全连接层。以 CIFAR-10 数据集为例,代码的实现结构说明如下。

  • conv1:输入图片大小为32×32 ,输入channel为3。首先经过一个卷积核数量为64,卷积核大小为7×7 ,stride为2的卷积层;然后通过一个Batch Normalization层;最后通过Reul激活函数。该层输出feature map大小为16×16,输出channel为64。
  • conv2_x:输入feature map大小为16×16 ,输入channel为64。首先经过一个卷积核大小为3×3 ,stride为2的最大下采样池化操作;然后堆叠3个[1×1,64;3×3,64;1×1,256][1×1,64;3×3,64;1×1,256]结构的Bottleneck。该层输出feature map大小为8×8 ,输出channel为256。
  • conv3_x:输入feature map大小为8×8 ,输入channel为256。该层堆叠4个[1×1,128;3×3,128;1×1,512] 结构的Bottleneck。该层输出feature map大小为4×4 ,输出channel为512。
  • conv4_x:输入feature map大小为4×4,输入channel为512。该层堆叠6个[1×1,256;3×3,256;1×1,1024]结构的Bottleneck。该层输出feature map大小为2×2,输出channel为1024。
  • conv5_x:输入feature map大小为2×2,输入channel为1024。该层堆叠3个[1×1,512;3×3,512;1×1,2048] 结构的Bottleneck。该层输出feature map大小为1×1 ,输出channel为2048。
  • average pool & fc:输入channel为2048,输出channel为分类的类别数。
from mindspore import load_checkpoint, load_param_into_netclass ResNet(nn.Cell):def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],layer_nums: List[int], num_classes: int, input_channel: int) -> None:super(ResNet, self).__init__()self.relu = nn.ReLU()# 第一个卷积层,输入channel为3(彩色图像),输出channel为64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)self.norm = nn.BatchNorm2d(64)# 最大池化层,缩小图片的尺寸self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')# 各个残差网络结构块定义self.layer1 = make_layer(64, block, 64, layer_nums[0])self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)# 平均池化层self.avg_pool = nn.AvgPool2d()# flattern层self.flatten = nn.Flatten()# 全连接层self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)def construct(self, x):x = self.conv1(x)x = self.norm(x)x = self.relu(x)x = self.max_pool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avg_pool(x)x = self.flatten(x)x = self.fc(x)return xdef _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],layers: List[int], num_classes: int, pretrained: bool, pretrained_ckpt: str,input_channel: int):model = ResNet(block, layers, num_classes, input_channel)if pretrained:# 加载预训练模型download(url=model_url, path=pretrained_ckpt, replace=True)param_dict = load_checkpoint(pretrained_ckpt)load_param_into_net(model, param_dict)return modeldef resnet50(num_classes: int = 1000, pretrained: bool = False):"""ResNet50模型"""## num_classes:分类的类别数,默认类别数为 1000。## pretrained:下载对应的训练模型,并加载预训练模型中的参数到网络中。resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,pretrained, resnet50_ckpt, 2048)

模型训练与评估

本案例使用 ResNet50预训练模型 进行微调。

通过调用上个小节的 resnet50 函数构造 ResNet50 模型,并设置pretrained参数为True,将会自动下载ResNet50预训练模型,并加载预训练模型中的参数到网络中。然后定义优化器和损失函数,逐个epoch打印训练的损失值和评估精度,并保存评估精度最高的ckpt文件(resnet50-best.ckpt)到当前路径的./BestCheckPoint下。

此处我们展示了5个epochs的训练过程,如果想要达到理想的训练效果,建议训练80个epochs。

import os
import mindspore.ops as ops# 定义ResNet50网络
network = resnet50(pretrained=True)# 全连接层输入层的大小
in_channel = network.fc.in_channels
fc = nn.Dense(in_channels=in_channel, out_channels=10)
# 重置全连接层
network.fc = fc# 设置学习率
num_epochs = 5
lr = nn.cosine_decay_lr(min_lr=0.00001, max_lr=0.001, total_step=step_size_train * num_epochs,step_per_epoch=step_size_train, decay_epoch=num_epochs)
# 定义优化器和损失函数
opt = nn.Momentum(params=network.trainable_params(), learning_rate=lr, momentum=0.9)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')def forward_fn(inputs, targets):logits = network(inputs)loss = loss_fn(logits, targets)return lossgrad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)def train_step(inputs, targets):loss, grads = grad_fn(inputs, targets)opt(grads)return lossdef train(data_loader, epoch):"""模型训练"""losses = []network.set_train(True)for i, (images, labels) in enumerate(data_loader):loss = train_step(images, labels)if i % 100 == 0 or i == step_size_train - 1:print('Epoch: [%3d/%3d], Steps: [%3d/%3d], Train Loss: [%5.3f]' %(epoch + 1, num_epochs, i + 1, step_size_train, loss))losses.append(loss)return sum(losses) / len(losses)def evaluate(data_loader):"""模型验证"""network.set_train(False)correct_num = 0.0  # 预测正确个数total_num = 0.0  # 预测总数for images, labels in data_loader:logits = network(images)pred = logits.argmax(axis=1)  # 预测结果correct = ops.equal(pred, labels).reshape((-1, ))correct_num += correct.sum().asnumpy()total_num += correct.shape[0]acc = correct_num / total_num  # 准确率return acc# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)# 最佳模型存储路径
best_acc = 0
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best.ckpt"if not os.path.exists(best_ckpt_dir):os.mkdir(best_ckpt_dir)# 开始循环训练
print("Start Training Loop ...")for epoch in range(num_epochs):curr_loss = train(data_loader_train, epoch)curr_acc = evaluate(data_loader_val)print("-" * 50)print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (epoch+1, num_epochs, curr_loss, curr_acc))print("-" * 50)# 保存当前预测准确率最高的模型if curr_acc > best_acc:best_acc = curr_accms.save_checkpoint(network, best_ckpt_path)print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "f"save the best ckpt file in {best_ckpt_path}", flush=True)

可视化模型预测

若预测字体颜色为蓝色表示为预测正确,预测字体颜色为红色则表示预测错误。

import matplotlib.pyplot as pltdef visualize_model(best_ckpt_path, dataset_val):num_class = 10  # 对狼和狗图像进行二分类net = resnet50(num_class)# 加载模型参数param_dict = ms.load_checkpoint(best_ckpt_path)ms.load_param_into_net(net, param_dict)# 加载验证集的数据进行验证data = next(dataset_val.create_dict_iterator())images = data["image"]labels = data["label"]# 预测图像类别output = net(data['image'])pred = np.argmax(output.asnumpy(), axis=1)# 图像分类classes = []with open(data_dir + "/batches.meta.txt", "r") as f:for line in f:line = line.rstrip()if line:classes.append(line)# 显示图像及图像的预测值plt.figure()for i in range(6):plt.subplot(2, 3, i + 1)# 若预测正确,显示为蓝色;若预测错误,显示为红色color = 'blue' if pred[i] == labels.asnumpy()[i] else 'red'plt.title('predict:{}'.format(classes[pred[i]]), color=color)picture_show = np.transpose(images.asnumpy()[i], (1, 2, 0))mean = np.array([0.4914, 0.4822, 0.4465])std = np.array([0.2023, 0.1994, 0.2010])picture_show = std * picture_show + meanpicture_show = np.clip(picture_show, 0, 1)plt.imshow(picture_show)plt.axis('off')plt.show()# 使用测试数据集进行验证
visualize_model(best_ckpt_path=best_ckpt_path, dataset_val=dataset_val)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/50285.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据输入输出的概念

文章目录 数据输入输出的概念及在C语言中的实现简单的格式输入与输出用简单的printf函数输出数据用简单的scanf函数输入数据较复杂的输入输出格式控制输出数据格式控制 数据输入输出的概念及在C语言中的实现 数据的输入与输出是相对于计算机而言的。其中: 从计算机…

昇思25天学习打卡营第33天|共赴算力时代

文章目录 一、平台简介二、深度学习模型2.1 处理数据集2.2 模型训练2.3 加载模型 三、共赴算力时代 一、平台简介 昇思大模型平台,就像是AI学习者和开发者的超级基地,这里不仅提供丰富的项目、模型和大模型体验,还有一大堆经典数据集任你挑。…

BM58 字符串的排列

1.题目描述 输入一个长度为 n 字符串&#xff0c;打印出该字符串中字符的所有排列&#xff0c;你可以以任意顺序返回这个字符串数组。 例如输入字符串ABC,则输出由字符A,B,C所能排列出来的所有字符串ABC,ACB,BAC,BCA,CBA和CAB。 数据范围&#xff1a;n<10n<10 要求&#…

本地搭建rtmp拉流

本地搭建rtmp拉流 可按照步骤来 关注公众号&#xff1a;城羽海 更多有趣实用教程 下载地址: 从微信公众号发送关键词 rtmp可获取下载地址 文章目录 本地搭建rtmp拉流 可按照步骤来 关注公众号&#xff1a;城羽海 更多有趣实用教程 拿到之后如图所下&#xff1f;二、配置obs文…

华为网络模拟器eNSP安装部署教程

eNSP是图形化网络仿真平台&#xff0c;该平台通过对真实网络设备的仿真模拟&#xff0c;帮助广大ICT从业者和客户快速熟悉华为数通系列产品&#xff0c;了解并掌握相关产品的操作和配置、提升对企业ICT网络的规划、建设、运维能力&#xff0c;从而帮助企业构建更高效&#xff0…

一个函数统一238个机器学习R包,这也太赞了吧

Caret 是一个试图标准化机器学习过程的一个包。Caret 对 R 中最常用的机器学习方法 (目前支持238个R包)提供了统一的接口。 进行数据预处理 实现机器学习方法流程化模型构建 通过参数组合和交叉验证评估模型的参数 选择最优模型 评估模型性能 一键满足各种掉包&#xff0c…

Linux开启coredump

在Linux系统中&#xff0c;C/C程序崩溃是常见的问题之一。Coredump是指当一个程序崩溃时&#xff0c;系统把程序运行时的内存数据以二进制文件的形式保存下来&#xff0c;以便程序开发者进行崩溃分析。本文将介绍如何开启并配置Coredump 1、查看并配置coredump 在Linux系统中…

基于微信小程序+SpringBoot+Vue的垃圾分类系统(带1w+文档)

基于微信小程序SpringBootVue的垃圾分类系统(带1w文档) 基于微信小程序SpringBootVue的垃圾分类系统(带1w文档) 本垃圾分类小程序也是紧跟科学技术的发展&#xff0c;运用当今一流的软件技术实现软件系统的开发&#xff0c;让环保方面的信息完全通过管理系统实现科学化&#xf…

不是演练 “毒云藤”再出击,知网用户成钓鱼攻击目标

亚信安全威胁情报中心近期在梳理安全事件时&#xff0c;发现一起钓鱼攻击活动。该起事件仿冒网易云邮箱进行钓鱼攻击&#xff0c;成功窃取到用户信息后将用户信息post到本地的”login.php”目录下保存&#xff0c;并跳转到正常网站。经分析&#xff0c;判断该行为符合绿斑APT组…

FastAPI(八十二)实战开发《在线课程学习系统》接口开发-- 课程上架下架

源码见&#xff1a;"fastapi_study_road-learning_system_online_courses: fastapi框架实战之--在线课程学习系统" 课程上架/下架 1、是否登录 2、角色权限 3、课程是否存在 4、是否是自己的课程 4、课程如果是上架状态&#xff0c;则下架&#xff0c;反之&#xff…

【Python第三方库】PyQt5安装与应用

文章目录 引言安装PYQT5基于Pyqt5的简单桌面应用常用的方法与属性QtDesigner工具使用与集成窗口类型QWidget和QMainWindow区别 UI文件加载方式直接加载UI文件的方式显示窗口转化py文件进行显示窗口 PyQt5中常用的操作信号与槽的设置绑定页面跳转 引言 PyQt5是一个流行的Python…

AutoSar中的Spi_SetupEB函数原理与实现

文章目录 一、函数介绍二、项目背景三、函数在AUTOSAR官网中的介绍四、代码实现五、验证六、联调过程中遇到的问题 一、函数介绍 此函数是Autosar标准中的接口&#xff0c;为EB SPI处理器/驱动程序设置缓冲区和数据长度的服务 指定频道。用容易理解的话说就是 设置一下某个通道…

SpringBoot中使用监听器

1.定义一个事件 /*** 定义事件* author hrui* date 2024/7/25 12:46*/ public class CustomEvent extends ApplicationEvent {private String message;public CustomEvent(Object source, String message) {super(source);this.message message;}public String getMessage() …

uniapp手写滚动选择器

文章目录 效果展示HTML/Template部分&#xff1a;JavaScript部分&#xff1a;CSS部分&#xff1a;完整代码 没有符合项目要求的选择器 就手写了一个 效果展示 实现一个时间选择器的功能&#xff0c;可以选择小时和分钟&#xff1a; HTML/Template部分&#xff1a; <picker…

『 Linux 』信号概念与信号的产生 ( 万字 )

文章目录 信号概念前台进程与后台进程信号的本质硬件理解信号的产生Core dump 标志 信号概念 "信号"一词指用来传达信息或只是的各种形式的提示或标志; 在生活中常见的信号例如红绿灯,交通标志,短信通知等 在操作系统中,"信号"是一种用于异步通知进程发生特…

国衍科技——RFID技术的应用

在文物馆藏信息的记录与管理过程中&#xff0c;准确性和详细性是至关重要的。无论是大型博物馆还是私人收藏馆&#xff0c;都需要有效的方法来确保馆藏文物信息的可追溯性和可访问性&#xff0c;才能提供更好的服务和保护馆藏资源。而结合射频识别&#xff08;RFID&#xff09;…

2024年虚拟主机转移教程

转移网站并不困难&#xff0c;但选择正确的选项和最佳程序才是关键。网站托管服务被视为当今数字世界的基石&#xff0c;全球有18 亿个网站。网站所有者可以通过下载备份、将其上传到新服务器并指向域名来手动转移网站。他们还可以通过新网站托管商的助手请求来移动网站。对于初…

华清数据结构day5 24-7-22

1>使用栈&#xff0c;完成进制转换输入&#xff1a;一个整数&#xff0c;进制数输出&#xff1a;该数的对应的进制数 seqstack.h #ifndef SEQSTACK_H #define SEQSTACK_H #define MAX 10 #include"myhead.h" typedef int datatype;typedef struct {datatype *d…

【Tomcat】快速入门

概述 Tomcat是Apache软件基金会一个核心项目&#xff0c;是一个开源免费的轻量级Web服务器&#xff0c;支持Servlet/JSP.少量avaEE规范。Tomcat Tomcat也被称为Web容器、Servlet容器。Servleti程序需要依赖于Tomcat才能运行。 安装使用 下载安装都是绿色版本&#xff0c;解…

Git、Gitlab以及分支管理

分布式版本控制系统 一、Git概述 Git是一种分布式版本控制系统&#xff0c;用于跟踪和管理代码的变更。它由Linus torvalds创建的&#xff0c;最初被设计用于Linux内核的开发。Git 允许开发人员跟踪和管理代码的版本&#xff0c;并且可以在不同的开发人员之间进行协作。 Githu…