从零开始:构建基于深度学习的实时跌倒检测系统(UI界面+YOLO代码+数据集)

注意看文末的结局与声明

一、引言

1. 项目背景与动机

在老年人和高危职业环境中,跌倒是一种常见的事故,可能导致严重的伤害甚至致命。实时跌倒检测系统可以及时发现并报警,提供紧急救助。通过深度学习技术,可以提高跌倒检测的准确性和实时性。

2. 跌倒检测的重要性

  • 及时发现和报警
  • 提供紧急救助
  • 保障老年人和高危职业从业人员的安全

3. 深度学习在跌倒检测中的应用前景

  • 实时检测
  • 高精度识别
  • 适用于多种环境和场景

目录

注意看文末的结局与声明

一、引言

1. 项目背景与动机

2. 跌倒检测的重要性

3. 深度学习在跌倒检测中的应用前景

二、系统设计与架构

1. 系统概述

2. 前端设计

UI界面需求分析

设计工具及框架选型

前端代码示例

3. 后端设计

服务器端技术选型

数据库设计与选型

后端代码示例

三、数据准备

1. 数据集收集

2. 数据预处理

四、模型选择与训练

1. YOLO模型概述

2. 环境配置

3. 模型训练

五、模型部署

1. 部署方式选择

2. 部署步骤

六、前端实现

1. UI界面开发

2. 前端与后端交互

七、系统测试

1. 测试环境搭建

2. 功能测试

3. 性能测试

结果与声明:


二、系统设计与架构

1. 系统概述

系统主要由前端UI、后端服务器和YOLO模型组成。用户通过UI上传视频,服务器调用YOLO模型进行检测,并将结果返回给用户。

系统架构图:

+------------------+        +--------------+        +-----------------+
|     前端UI       | <----> |    后端API   | <----> | YOLO检测模型    |
+------------------+        +--------------+        +-----------------+

2. 前端设计

UI界面需求分析
  • 登录注册界面
  • 视频上传界面
  • 检测结果展示界面
设计工具及框架选型
  • HTML、CSS、JavaScript
  • React.js
前端代码示例

登录注册界面

<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>跌倒检测系统</title><link rel="stylesheet" href="styles.css">
</head>
<body><div id="app"></div><script src="https://unpkg.com/react/umd/react.development.js"></script><script src="https://unpkg.com/react-dom/umd/react-dom.development.js"></script><script src="app.js"></script>
</body>
</html>

React组件

// app.js
const App = () => {return (<div><h1>跌倒检测系统</h1><Login /></div>);
};const Login = () => {const handleLogin = (event) => {event.preventDefault();// 实现登录逻辑};return (<form onSubmit={handleLogin}><div><label>用户名:</label><input type="text" name="username" required /></div><div><label>密码:</label><input type="password" name="password" required /></div><button type="submit">登录</button></form>);
};ReactDOM.render(<App />, document.getElementById('app'));

样式文件

/* styles.css */
body {font-family: Arial, sans-serif;display: flex;justify-content: center;align-items: center;height: 100vh;background-color: #f0f0f0;
}form {background: #fff;padding: 20px;border-radius: 5px;box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}div {margin-bottom: 15px;
}label {display: block;margin-bottom: 5px;
}input {width: 100%;padding: 8px;box-sizing: border-box;
}

3. 后端设计

服务器端技术选型
  • Flask(Python)
数据库设计与选型
  • MySQL
后端代码示例

安装Flask

pip install flask

Flask服务器

# server.py
from flask import Flask, request, jsonify
from flask_sqlalchemy import SQLAlchemyapp = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:admin@localhost/fall_detection_db'
db = SQLAlchemy(app)class User(db.Model):id = db.Column(db.Integer, primary_key=True)username = db.Column(db.String(80), unique=True, nullable=False)password = db.Column(db.String(80), nullable=False)@app.route('/login', methods=['POST'])
def login():data = request.get_json()user = User.query.filter_by(username=data['username'], password=data['password']).first()if user:return jsonify({'message': 'Login successful'}), 200else:return jsonify({'message': 'Invalid credentials'}), 401if __name__ == '__main__':db.create_all()app.run(debug=True)

前后端交互

// 在React组件中添加API请求
const handleLogin = (event) => {event.preventDefault();const data = {username: event.target.username.value,password: event.target.password.value,};fetch('http://localhost:5000/login', {method: 'POST',headers: {'Content-Type': 'application/json',},body: JSON.stringify(data),}).then(response => response.json()).then(data => {if (data.message === 'Login successful') {alert('登录成功');} else {alert('用户名或密码错误');}});
};

三、数据准备

1. 数据集收集

通过公开数据集收集跌倒检测视频。例如,使用以下命令下载数据集:

kaggle datasets download -d some-dataset/fall-detection

2. 数据预处理

使用LabelImg工具进行标注

pip install labelImg
labelImg

转换为YOLO格式

import os
import shutildef convert_to_yolo_format(input_dir, output_dir):# 读取所有标注文件for filename in os.listdir(input_dir):if filename.endswith(".xml"):# 处理标注文件passelif filename.endswith(".jpg"):# 复制图像文件shutil.copy(os.path.join(input_dir, filename), output_dir)convert_to_yolo_format("path/to/labelimg/output", "path/to/yolo/format")

四、模型选择与训练

1. YOLO模型概述

YOLO(You Only Look Once)是一种高效的实时目标检测模型。YOLOv5、YOLOv6、YOLOv7、YOLOv8均为其不同版本,提供不同的性能和速度。

2. 环境配置

安装CUDA和cuDNN 根据你的操作系统,下载并安装CUDA和cuDNN。

安装PyTorch

pip install torch torchvision

克隆YOLO模型仓库

git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt

3. 模型训练

数据集划分

import os
import shutil
from sklearn.model_selection import train_test_splitdef split_dataset(input_dir, output_dir):images = [f for f in os.listdir(input_dir) if f.endswith(".jpg")]train, test = train_test_split(images, test_size=0.2, random_state=42)train, val = train_test_split(train, test_size=0.1, random_state=42)os.makedirs(os.path.join(output_dir, 'train'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'val'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'test'), exist_ok=True)for t in train:shutil.copy(os.path.join(input_dir, t), os.path.join(output_dir, 'train', t))for v in val:shutil.copy(os.path.join(input_dir, v), os.path.join(output_dir, 'val', v))for te in test:shutil.copy(os.path.join(input_dir, te), os.path.join(output_dir, 'test', te))split_dataset("path/to/dataset", "path/to/split/dataset")

模型参数设置与训练 在YOLO配置文件中设置模型参数,然后运行训练命令。

python train.py --img 640 --batch 16 --epochs 50 --data path/to/data.yaml --cfg path/to/yolov5.yaml --weights yolov5s.pt --name fall_detection

五、模型部署

1. 部署方式选择

选择本地部署和云端部署。例如,使用TensorFlow Serving进行云端部署。

2. 部署步骤

模型导出

import torchmodel = torch.load('path/to/your/model.pt')
model.eval()
torch.onnx.export(model, input_tensor, 'model.onnx', opset_version=11)

使用TensorFlow Serving进行部署

docker pull tensorflow/serving
docker run -p 8501:8501 --name tfserving_fall -v "$(pwd)/model:/models/fall" -e MODEL_NAME=fall -t tensorflow/serving

六、前端实现

1. UI界面开发

上传视频界面

const UploadVideo = () => {const [video, setVideo] = useState(null);const handleVideoChange = (event) => {setVideo(event.target.files[0]);};const handleSubmit = (event) => {event.preventDefault();const formData = new FormData();formData.append('video', video);fetch('http://localhost:5000/upload', {method: 'POST',body: formData,}).then(response => response.json()).then(data => {// 处理返回结果});};return (<form onSubmit={handleSubmit}><input type="file" onChange={handleVideoChange} /><button type="submit">上传</button></form>);
};ReactDOM.render(<UploadVideo />, document.getElementById('app'));

结果展示界面

const Result = ({ result }) => {return (<div><h2>检测结果</h2><video src={result.videoUrl} controls /><p>{result.message}</p></div>);
};

2. 前端与后端交互

API设计

@app.route('/upload', methods=['POST'])
def upload_video():file = request.files['video']# 保存文件并进行处理result = detect_fall(file)return jsonify(result)

检测逻辑

def detect_fall(file):# 加载模型并进行检测# 返回检测结果return {"videoUrl": "path/to/result/video", "message": "跌倒检测结果"}

七、系统测试

1. 测试环境搭建

搭建本地和云端测试环境,准备测试数据。

2. 功能测试

单元测试

def test_login():response = client.post('/login', json={'username': 'test', 'password': 'test'})assert response.status_code == 200

集成测试

def test_upload_video():with open('path/to/test/video.mp4', 'rb') as vid:response = client.post('/upload', data={'video': vid})assert response.status_code == 200

3. 性能测试

使用工具如JMeter进行性能测试,测试系统的响应时间和并发性能。

结果与声明:

以上为简单项目的思路,如果有想部署的想法,想要远程部署+源代码+数据集的可以联系作者。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/49069.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android14 - 前台Service、图片选择器 、OpenJDK 17、其他适配

前台服务 1. 指定前台服务类型 以 Android 14(API 级别 34)或更高版本为目标平台的应用,需要为应用中的每项前台服务指定服务类型,因为系统需要特定类型的前台服务满足特定用例。具体介绍如下: 在Android 10 在 <service> 元素内引入了 android:foregroundServiceT…

Java并发的笔记

打算记录自己的学习情况&#xff0c;尽量不摆烂&#xff0c;另外一件事要有始有终&#xff0c;要弄完 如果多个线程处理同一个变量&#xff0c;读跟写都保证不了 2024.7.22》》》》》》》》》》》》 2.1.1volatile的实现原理 volatile不会引起线程上下文的切换和调度 一致性更…

pycharm+pyqt6配置

1、pip install pyqt6 pyqt6-toools 2、pycharm配置 配置&#xff1a;designer Program&#xff1a;&#xff1a;D:\Python39\Lib\site-packages\qt6_applications\Qt\bin\designer.exe Working directory: $ProjectFileDir$ 配置&#xff1a;pyuic6.exe Program&#xff1a…

调度子系统在特定时间执行

时序逻辑调度器设计模式允许您安排Simulink子系统在指定时间执行。以下模型说明了这种设计模式。 时序逻辑调度器图表包含以下逻辑&#xff1a; 时序逻辑调度器的关键行为 时序逻辑调度器图表包含两个状态&#xff0c;它们以不同的速率调度函数调用子系统A1、A2和A3的执行&…

DVWA靶场超(详细教程)--跨站攻击(XSS+CSRF)

一、XSS 反射型xss 打开dvwa的Reflected Cross Site Scripting (XSS) &#xff08;1&#xff09;low等级 查看页面源码&#xff08;ctrlu&#xff09;该界面有提交按钮和输入框 在输入框随便输入点字符&#xff0c;点击提交 可以看见输入的helloword嵌入到界面中。 View sou…

PS启动提示Adobe Creative Cloud丢失或损坏。您可以尝试修复来解决这个问题,如何解决

一般为找到这个路径下C:\Program Files (x86)\Common Files\Adobe\Adobe Desktop Common\ADS的Adobe Desktop Service.exe文件。如果不在C盘也可以直接搜索其他盘找到此文件。 直接删除此文件即可解决&#xff0c;如果删除不了可以进任务管理器先结束进程再删除。鼠标右键结束任…

DolphinScheduler安装教程

DolphinScheduler安装教程 前期准备工作 jdk 1.8mysql 5zookeeper 3.4.6hadoop 2.6psmisc yum -y install psmisc 解压安装包 # 将安装包apache-dolphinscheduler-2.0.8-bin.tar.gz放置/opt/download目录下 # 解压缩 tar -zxvf apache-dolphinscheduler-2.0.8-bin.tar.gz -C …

看准JS逆向案例:webpack逆向解析

&#x1f50d; 逆向思路与步骤 抓包分析与参数定位 首先&#xff0c;我们通过抓包工具对看准网的请求进行分析。 发现请求中包含加密的参数b和kiv。 为了分析这些加密参数&#xff0c;我们需要进一步定位JS加密代码的位置。 扣取JS加密代码 定位到JS代码中的加密实现后&a…

学习java第一百三十八天

Bean的作用域 1、singleton&#xff1a;单例&#xff0c;Spring中的bean默认都是单例的。 2、prototype&#xff1a;每次请求都会创建一个新的bean实例。 3、request&#xff1a;每一次HTTP请求都会产生一个新的bean&#xff0c;该bean仅在当前HTTP request内有效。 4、session…

PGSQL学习-基础表结构

1 访问数据库 创建好数据库后&#xff0c;你可以有三种方式访问数据库 运行PostgreSQL的交互式终端程序&#xff0c;它被称为psql&#xff0c; 它允许你交互地输入、编辑和执行SQL命令。 使用一种已有的图形化前端工具&#xff0c;比如pgAdmin或者带ODBC或JDBC支持的办公套件…

leetcode4 -- 寻找两个正序数组的中位数

题目描述&#xff1a; 给定两个大小分别为 m 和 n 的正序&#xff08;从小到大&#xff09;数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 算法的时间复杂度应该为 O(log (mn)) 。 示例 1&#xff1a; 输入&#xff1a;nums1 [1,3], nums2 [2] 输出&…

GPU驱动、CUDA 、cuDNN 和CUDA Toolkit之间的关系(深度学习小白必懂)

GPU驱动、CUDA、cuDNN和CUDA Toolkit之间有着紧密的关系&#xff0c;它们共同构成了一个完整的GPU编程和深度学习开发环境。 在最初配置anaconda环境时一直搞不明白它们之间的关系。所以根据自己的理解&#xff0c;通俗详细解释它们各自的角色和相互间的关系&#xff0c;并且列…

前端面试 vue 接口权限控制

接口权限目前一般采用jwt的形式来验证&#xff0c;没有通过的话一般返回401&#xff0c;跳转到登录页面重新进行登录 对于 jwt的理解 &#xff08;前端接口权限的控制主要通过接口权限配置和JWT&#xff08;‌Json Web Token&#xff09;‌技术来实现。‌ 首先&#xff0c;‌…

前端设计模式面试题汇总

面试题 1. 简述对网站重构的理解&#xff1f; 参考回答&#xff1a; 网站重构&#xff1a;在不改变外部行为的前提下&#xff0c;简化结构、添加可读性&#xff0c;而在网站前端保持一致的行为。也就是说是在不改变UI的情况下&#xff0c;对网站进行优化&#xff0c; 在扩展的…

红人点集登录逆向+接口逆向:SHA256算法和Webpack反爬

&#x1f50d; 引言 红人点集采取了一系列加密和限制措施&#xff0c;主要是对于参数加密和登录token加密。今天利用Python与JavaScript逆向工程技术&#xff0c;实现逆向登录然后请求接口获取数据。 &#x1f50d; 思路与步骤详解 &#x1f527; 解密登录接口参数&#xf…

【k8s故障处理篇】calico-kube-controllers状态为“ImagePullBackOff”解决办法

【k8s故障处理篇】calico-kube-controllers状态为“ImagePullBackOff”解决办法 一、环境介绍1.1 本次环境规划1.2 kubernetes简介1.3 kubernetes特点二、本次实践介绍2.1 本次实践介绍2.2 报错场景三、查看报错日志3.1 查看pod描述信息3.2 查看pod日志四、报错分析五、故障处理…

机器学习·概率论基础

概率论 概率基础 这部分太简单&#xff0c;直接略过 条件概率 独立性 独立事件A和B的交集如下 非独立事件 非独立事件A和B的交集如下 贝叶斯定理 先验 事件 后验 在概率论和统计学中&#xff0c;先验概率和后验概率是贝叶斯统计的核心概念 简单来说后验概率就是结合了先验概…

如何将mp4格式的视频压缩更小 mp4格式视频怎么压缩最小 工具软件分享

在数字化时代&#xff0c;视频内容成为信息传播的重要载体。然而&#xff0c;高清晰度的视频往往意味着较大的文件体积&#xff0c;这给存储和分享带来了一定的困扰。MP4格式作为目前最流行的视频格式之一&#xff0c;其压缩方法尤为重要。下面&#xff0c;我将为大家详细介绍如…

浏览器渲染揭秘:从加载到显示的全过程;浏览器工作原理与详细流程

目录 浏览器工作原理与流程 一、渲染开始时间点 二、渲染主线程的渲染流程 2.1、渲染流程总览 2.2、渲染具体步骤 ①解析html-Parse HTML ②样式计算-Recalculate Style ③布局-Layout ④分层-Layer 相关拓展 ⑤绘制-Paint ⑥分块-Tiling ⑦光栅化-Raster ⑧画-D…

程序员事业遇到了瓶颈怎么办

年轻程序员层出不穷&#xff0c;但其实资深程序员的地位依然稳固&#xff0c;资深工程师的经验是年轻人比不了&#xff0c;遇到同样的问题&#xff0c;资深程序员的效率会更高&#xff0c;尤其是我们嵌入式工程师&#xff0c;涉及的知识面比较多&#xff0c;多年累积下来能力是…