数据结构之判断平衡二叉树详解与示例(C,C++)

文章目录

    • AVL树定义
    • 节点定义
    • 计算高度
    • 获取平衡因子
    • 判断是否为平衡二叉树
    • 完整示例代码
    • 结论

在这里插入图片描述


在计算机科学中,二叉树是一种非常重要的数据结构。它们被广泛用于多种算法中,如排序、查找等。然而,普通的二叉树在极端情况下可能退化成链表,导致算法性能大大降低。为了解决这个问题,Adelson-Velsky和Landis在1962年提出了平衡二叉树(AVL树)。本文将详细介绍如何判断一个二叉树是否为平衡二叉树,并提供C和C++语言的示例代码。

AVL树定义

AVL树是一种自平衡的二叉搜索树,其中任何节点的两个子树的高度最大差别为1。这种平衡保证了树的高度大约是log(n),其中n是树中节点的数量。这使得AVL树在最坏情况下的查找、插入和删除操作的时间复杂度都是O(log n)。

节点定义

首先,我们需要定义树的节点结构。每个节点包含以下信息:

  1. 键值(Key)
  2. 左子树指针(Left)
  3. 右子树指针(Right)
  4. 节点高度(Height)

C语言示例

struct TreeNode {int key;struct TreeNode *left;struct TreeNode *right;int height;
};

C++语言示例

struct TreeNode {int key;TreeNode *left;TreeNode *right;int height;TreeNode(int k) : key(k), left(nullptr), right(nullptr), height(1) {}
};

计算高度

计算节点的高度,如果节点为空,则高度为-1。

C语言示例

int height(struct TreeNode *N) {if (N == NULL)return 0;return N->height;
}

C++语言示例

int height(TreeNode *N) {if (N == nullptr) return 0;return N->height;
}

获取平衡因子

平衡因子是右子树高度与左子树高度的差。如果节点的平衡因子绝对值大于1,则该树不是平衡的。

C语言示例

int getBalance(struct TreeNode *N) {if (N == NULL)return 0;return height(N->right) - height(N->left);
}

C++语言示例

int getBalance(TreeNode *N) {if (N == nullptr) return 0;return height(N->right) - height(N->left);
}

判断是否为平衡二叉树

通过递归检查每个节点,判断是否每个节点的平衡因子都在-1到1之间。

C语言示例

int isBalanced(struct TreeNode *root) {if (root == NULL)return 1;int leftHeight = height(root->left);int rightHeight = height(root->right);if (abs(leftHeight - rightHeight) > 1)return 0;return isBalanced(root->left) && isBalanced(root->right);
}

C++语言示例

bool isBalanced(TreeNode *root) {if (root == nullptr) return true;int leftHeight = height(root->left);int rightHeight = height(root->right);if (abs(leftHeight - rightHeight) > 1)return false;return isBalanced(root->left) && isBalanced(root->right);
}

完整示例代码

以下是完整的示例代码,包括创建树和判断是否为平衡二叉树。

C语言完整示例

#include <stdio.h>
#include <stdlib.h>
#include <math.h>// ... (省略之前定义的TreeNode结构和函数)int main() {struct TreeNode *root = newNode(1);root->left = newNode(2);root->right = newNode(3);root->left->left = newNode(4);root->left->right = newNode(5);if (isBalanced(root))printf("Tree is balanced\n");elseprintf("Tree is not balanced\n");return 0;
}

C++语言完整示例

#include <iostream>
#include <cmath>
#include <algorithm>using namespace std;// ... (省略之前定义的TreeNode结构和函数)int main() {TreeNode *root = new TreeNode(1);root->left = new TreeNode(2);root->right = new TreeNode(3);root->left->left = new TreeNode(4);root->left->right = new TreeNode(5);if (isBalanced(root))cout << "Tree is balanced" << endl;elsecout << "Tree is not balanced" << endl;// 注意:在C++中,使用new分配的内存需要手动释放delete root->left->left;delete root->left->right;delete root->left;delete root->right;delete root;return 0;
}

完整示例代码(C语言)
递归检查每个节点,如果发现任何节点的平衡因子不在-1到1之间,则整棵树不是平衡二叉树。

#include <stdio.h>
#include <stdlib.h>
#include <math.h>struct TreeNode {int key;struct TreeNode *left;struct TreeNode *right;int height;
};int max(int a, int b) {return (a > b) ? a : b;
}int height(struct TreeNode *N) {if (N == NULL)return 0;return N->height;
}int getBalance(struct TreeNode *N) {if (N == NULL)return 0;return height(N->right) - height(N->left);
}struct TreeNode *newNode(int key) {struct TreeNode *node = (struct TreeNode *)malloc(sizeof(struct TreeNode));node->key = key;node->left = NULL;node->right = NULL;node->height = 1; // 新节点被当做叶子节点加入,高度为1return(node);
}int isBalanced(struct TreeNode *root) {if (root == NULL)return 1;int leftHeight = height(root->left);int rightHeight = height(root->right);if (abs(leftHeight - rightHeight) > 1)return 0;return isBalanced(root->left) && isBalanced(root->right);
}int main() {struct TreeNode *root = newNode(1);root->left = newNode(2);root->right = newNode(3);root->left->left = newNode(4);root->left->right = newNode(5);if (isBalanced(root))printf("Tree is balanced\n");elseprintf("Tree is not balanced\n");return 0;
}

此代码将创建一个简单的二叉树,并检查它是否为平衡二叉树。在实际应用中,平衡二叉树的插入和删除操作会更复杂,因为它们需要维护树的平衡,通常会涉及到节点的旋转操作。

结论

本文详细介绍了如何判断一个二叉树是否为平衡二叉树,并提供了C和C++语言的示例代码。在实际应用中,平衡二叉树的插入和删除操作会更复杂,因为它们需要维护树的平衡,通常会涉及到节点的旋转操作。理解并掌握AVL树是成为一名优秀程序员的重要一步,因为它不仅能够提高算法的效率,还能帮助我们在处理复杂问题时保持清晰的逻辑思维。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/48833.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动态特征转换的艺术:在Mojo模型中实现自定义变换的策略

动态特征转换的艺术&#xff1a;在Mojo模型中实现自定义变换的策略 在机器学习中&#xff0c;特征转换是数据预处理的关键步骤&#xff0c;它直接影响模型的性能和结果的准确性。Mojo模型&#xff0c;作为一种高效的模型部署形式&#xff0c;允许在不同环境中运行模型并进行预…

C#基于SkiaSharp实现印章管理(4)

前几篇文章实现了绘制不同外形印章的功能&#xff0c;印章内部一般包含圆形、线条等形状&#xff0c;有些印章内部还有五角星&#xff0c;然后就是各种样式的文字。本文实现在印章内部绘制圆形、线条、矩形、椭圆等四种形状。   定义FigureType枚举记录印章内部形状&#xff…

图像处理 -- ISP调优(tuning)的步骤整理

ISP调优流程培训文档 1. 硬件准备 选择合适的图像传感器&#xff1a;根据项目需求选择合适的传感器型号。搭建测试环境&#xff1a;包括测试板、光源、色彩卡和分辨率卡等。 2. 初始设置 寄存器配置&#xff1a;初始化传感器的寄存器设置&#xff0c;包括曝光、增益、白平衡…

pcie数据传输

一 数据传输通道总体设计 在上传数据时首先将 FPGA 中数据缓存到 DDR3 存储器&#xff0c;然后上位机请求后把数据从DDR3 存储器中取出并通过 PCIE 总线将数据传输到上位机&#xff1b;在下传数据时上位机中的数据首先通过 PCIE 总线下传至 FPGA&#xff0c;FPGA 读取这些数据并…

RabbitMQ+redis+Redisson分布式锁+seata实现订单服务

引言 订单服务涉及许多方面&#xff0c;分布式事务&#xff0c;分布式锁&#xff0c;例如订单超时未支付要取消订单&#xff0c;订单如何防止重复提交&#xff0c;如何防止超卖、这里都会使用到。 开启分布式事务可以保证跨多个服务的数据操作的一致性和完整性&#xff0c;使…

技术文档总结----思维导图

性能调优| ProcessOn免费在线作图,在线流程图,在线思维导图 mysql| ProcessOn免费在线作图,在线流程图,在线思维导图 kafka| ProcessOn免费在线作图,在线流程图,在线思维导图 mybatis缓存| ProcessOn免费在线作图,在线流程图,在线思维导图 java锁| ProcessOn免费在线作图,在…

小程序内嵌uniapp页面跳转回小程序指定页面方式

使用微信小程序提供的Api&#xff1a;wx.miniProgram.navigateTo 在小程序中嵌套uniapp的H5页面&#xff0c;并使用wx.miniProgram.navigateTo进行页面跳转&#xff0c;需要确保满足以下条件&#xff1a; 你的小程序必须是通过uniapp构建的&#xff0c;并且支持小程序嵌套。 你…

宝塔安装完成,但访问https宝塔面板404,可以试试如下操作

问题 宝塔安装好了&#xff0c;日志信息都好的&#xff0c;但访问https访问不了解决 命令行 bt 进入宝塔命令界面宝塔面板命令行(1) 重启面板服务 (8) 改面板端口 | (2) 停止面板服务 (9) 清除面板缓存 | (3) 启动面板服务 (10) 清除登录限制 | (4) 重载面板服务 (11) 设置是…

坑人的macos tar 命令 (实际上是bsdtar)换用 gnu tar

周末 看着笔记本上好用的朗文当代高级词典(mac版)和其它两部词典&#xff0c;准备复制到黑苹果台式机上去。考虑到词典内容有太多小文件&#xff0c;普通复制传输太慢&#xff0c;毫无疑问用 tar 打包肯定快而且能保留原始文件的各种信息。命令如下&#xff1a; time tar czf …

系统架构设计师教程 第3章 信息系统基础知识-3.8 典型信息系统架构模型-解读

系统架构设计师教程 第3章 信息系统基础知识-3.8 典型信息系统架构模型-解读 3.8.1 政府信息化与电子政务3.8.1.1 电子政务的概念3.8.1.2 电子政务的内容3.8.1.2.1 政府与政府3.8.1.2.2 政府对企/事业单位3.8.1.2.3 政府对居民3.8.1.2.4 企业对政府3.8.1.2.5 居民对政府 3.8.1…

【HarmonyOS】HarmonyOS NEXT学习日记:六、渲染控制、样式结构重用

【HarmonyOS】HarmonyOS NEXT学习日记&#xff1a;六、渲染控制、样式&结构重用 渲染控制包含了条件渲染和循环渲染&#xff0c;所谓条件渲染&#xff0c;即更具状态不同&#xff0c;选择性的渲染不同的组件。 而循环渲染则是用于列表之内的、多个重复元素组成的结构中。 …

RabbitMQ的学习和模拟实现|GTest测试框架的介绍和简单使用

GTest 项目仓库&#xff1a;https://github.com/ffengc/HareMQ GTest GTest是什么我们需要学习的GTest功能宏断言事件机制 全局测试套件独立测试套件 GTest是什么 GTest是一个跨平台的 C单元测试框架&#xff0c;由google公司发布。gtest是为了在不同平台上为编写C单元测…

JAVA JUC学习笔记

基础知识 1、进程和线程的对比 进程基本上相互独立的&#xff0c;而线程存在于进程内&#xff0c;是进程的一个子集进程拥有共享的资源&#xff0c;如内存空间等&#xff0c;供其内部的线程共享进程间通信较为复杂 同一台计算机的进程通信称为 IPC&#xff08;Inter-process …

.Net 8 控制台程序部署(Linux篇)

在无流量Linux环境下部署.NET8开发的控制台程序 写在前面准备远程访问安装环境程序部署1.下载并导入2.解压并配置3.发布程序4.创建Systemd服务单元文件5.启用并启动服务 写在结尾 写在前面 好久没更新文章了&#xff0c;今天给大家带来的是在在无流量的Linux工控机上部署.Net8…

理想化相机模型的相机内参

文章目录 理想化相机模型的相机内参计算1. 相机内参定义2. 根据视角和图像分辨率计算相机内参2.1 计算焦距 fx 和 fy2.2 计算主点 cx 和 cy3. 示例计算3.1 计算 fx3.2 假设 fy = fx(因为没有垂直视场角的信息)3.3 计算主点4. 相机内参矩阵理想化相机模型的相机内参计算 在理…

MSP430M03507最小系统板的keil环境搭配,用keil编辑ti单片机

转载自嘉立创MSP430M03507开发手册 这篇文章只是因为我的keil版本与嘉立创的不一样&#xff0c;所以添加了我自己遇到的问题解析 先说说为什么要用keil编辑&#xff0c;因为ti单片机自己的ccs编译环境需要对应仿真器&#xff0c;那个加芯片都240了&#xff0c;哪有那么多钱买…

FastDFS分布式存储

一&#xff1a;FastDFS原理 FastDFS是一个开源的轻量级分布式文件系统&#xff0c;功能包括&#xff1a;文件存储&#xff0c;文件同步&#xff0c;文件访问&#xff08;文件上传、文件下载&#xff09;等&#xff0c;解决了大容量存储和负载均衡的问题。 1&#xff1a;FastD…

56 网络层

本节重点 理解网络层的作用&#xff0c;深入理解IP协议的基本原理 对整个TCP/IP协议有系统的理解 对TCP/IP协议体系下的其他重要协议和技术有一定的了解 目录 前置认识ip协议基本概念协议头格式网段划分特殊的ip地址ip地址的数量限制私有ip和公有ip路由路由表生成算法 在复杂…

Wi-SUN无线通信技术 — 大规模分散式物联网应用首选

引言 在数字化浪潮的推动下&#xff0c;物联网&#xff08;IoT&#xff09;正逐渐渗透到我们生活的方方面面。Wi-SUN技术以其卓越的性能和广泛的应用前景&#xff0c;成为了大规模分散式物联网应用的首选。本文将深入探讨Wi-SUN技术的市场现状、核心优势、实际应用中的案例以及…

使用html2pdf实现前端页面打印,批量打印导出为PDF

// 使用注意&#xff1a; // 如果页面中有图片会因为跨域问题导致图片下载不下来 // 所以在图片标签中需要加入一些属性&#xff1a;crossOrigin 和 url后加一个随机后缀 // <Image crossOrigin"anonymous" src{${faceInfo.user_face_url}?v${new Date()}} width…