基于重要抽样的主动学习不平衡分类方法ALIS

        这篇论文讨论了数据分布不平衡对分类器性能造成的影响,并提出了一种新的有效解决方案 - 主动学习框架ALIS。

        1、数据分布不平衡会影响分类器的学习性能。现有的方法主要集中在过采样少数类或欠采样多数类,但往往只采用单一的采样技术,无法有效解决严重的类别不平衡问题。

        2、论文提出了ALIS框架,它通过交替进行重要多数类实例选择有价值少数类实例生成,使得两种采样策略相互影响和改善。

        3、ALIS可以在保持采样平衡的同时,选择出更有价值的多数类实例和生成更有代表性的少数类实例,从而大幅提高分类器的性能。

传统方法缺点:

        基于采样的技术一直是通过增加少数类实例(过采样)或减少多数类实例(欠采样)来缓解不平衡问题的一种直接而简单的方法。

        基于混合采样同时利用欠采样和过采样的联合方法。虽然混合抽样方法同时利用了这两种抽样策略,但它们仍然或多或少地存在着这两种抽样策略分开执行的缺点。

        集成学习和代价敏感学习也被用来提高非平衡数据分类器的性能。但集成方法的问题是如何生成准确的集成分量并设计适当的融合函数来组合弱分类器。同样,即使借助领域知识,手动调整成本敏感型学习方法的成本参数也是昂贵的。

一、ALIS算法主要思想

对于主动学习的每次迭代,都做两件事:①、挑选重要的多数类实例;②、生成信息丰富的少数类实例。

基于此,主动学习能够在每个学习阶段产生均衡的训练集!

1.1、挑选重要的多数类实例(欠采样过程)

这个新的主动选择准则捕捉了选定多数类实例的以下两个统计特征:

(1) 一阶统计信息:选定多数类实例到当前决策边界的平均距离。这反映了这些实例与边界的相关性程度。

(2) 二阶统计信息:选定多数类实例到当前决策边界的距离方差。这反映了这些实例的多样性程度。

        当这些多数类实例与决策边界的距离差异较小时,意味着这些实例分布比较集中,缺乏多样性。距离方差就会较小。
        相反,如果这些多数类实例与决策边界的距离差异较大,意味着它们分布较为分散,体现了较高的多样性。距离方差就会较大。

1.2、生成信息丰富的少数类实例(过采样过程)

        与之前简单的过采样方法相比,ALIS通过选择重要的边界实例、计算它们的重要性权重,并采用核密度估计来生成新样本,可以生成更加贴近决策边界、分布更加多样化的少数类合成实例。

二、ALIS基本框架

Pactive 表示主动学习少数类样本个数,Nactive表示主动学习多数类样本个数,其中数字上标j为主动学习的第j次迭代过程

j = 0时,代表初始值,即初始时的训练集由两部分组成:①所有少数类样本(有P个);②随机挑选P个多数类样本(随机欠采样过程)

之后的第j次迭代,进行ALIS算法的重要过采样(生成Pj active个少数类样本)和重要欠采样(从剩余的多数类实例池 Nj-1 pool 中选择重要的多数类实例 Nj active)

当训练集在连续两轮的预测性能差异小于阈值时,主动学习过程终止。最终分类器由原始少数类实例 P、初始随机选择的多数类实例 N0 active、过采样的少数类实例 Pactive 和欠采样的多数类实例 Nactive 组成。

1、重要欠采样

ALIS尝试选择边界周围的重要多数实例。为了实现这一点,它考虑了这些实例的结构信息,例如它们的第一和第二统计信息。

具体步骤:

将距离当前边界最近的m个实例(实验中m取3)作为初始候选集Nj0_active

在每次迭代中,从池中选择最接近边界的t个额外实例(遵循主动学习策略,在实验中将t设置为2),并将其添加到Njk active中。

对于每一次迭代都要计算其边缘分布率ratio j k的值,可以由如下公式计算。其值越小,表示距离平均值小,距离方差大。前者有利于不确定实例的选择,因为它们靠近边界。后者有助于选择不同的实例,因为它们是彼此分散的

 因此,如果ratiojk+1 > ratiojk,则选择信息负点的过程结束,其中Nj_active = Njk_active。

2、重要过采样

①识别有价值的边界少数类实例(采样种子):
        那些少数类实例的k个最近邻里包含多数类实例,被认为处于边界区域。这些边界少数类实例被选为有价值的集合,记作Pinfo。
②给采样种子分配重要性权重:
        对于Pinfo中的每个实例xi,根据它的k个最近邻的分布,给它分配一个权重值ξi。权重ξi计算为xi的k个最近邻中多数类实例的比例。
③使用核密度估计生成新的少数类实例:
        使用一个核密度函数Gi(x)来捕捉有价值少数类实例(xi ∈ Pinfo)的分布。核密度函数是一个以xi为中心、带宽为hi的高斯分布。整体概率密度函数p(x)被估计为各个高斯核函数的加权和,权重为ξi。
④通过从估计的概率密度函数p(x)中采样,可以生成新的少数类实例。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/48293.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9种二极管及其特点总结

二极管种类和特点 名字特点恒流二极管近些年出现,电压大于某个值,电流恒定,一般用于led普通二极管低频整流和续流,便宜,反向恢复时间us级别,PN结肖特基二极管比普通二极管反向关断更快,10ns级别…

智能硬件——0-1开发流程

文章目录 流程图1. 市场分析具体分析 2. 团队组建2. 团队组建早期团队配置建议配置一:基础型团队 (4人)配置二:扩展型团队 (6人)配置三:全面型团队 (7人) 3. 产品需求分析4. ID设计(Industrial Design, 工业设计)5. 结…

阿里云公共DNS免费版自9月30日开始限速 企业或商业场景需使用付费版

本周阿里云发布公告对公共 DNS 免费版使用政策进行调整,免费版将从 2024 年 9 月 30 日开始按照请求源 IP 进行并发数限制,单个 IP 的请求数超过 20QPS、UDP/TCP 流量超过 2000bps 将触发限速策略。 阿里云称免费版的并发数限制并非采用固定的阈值&…

Unity游戏开发入门:从安装到创建你的第一个3D场景

目录 引言 一、Unity的安装 1. 访问Unity官网 2. 下载Unity Hub 3. 安装Unity Hub并安装Unity编辑器 二、创建你的第一个项目 1. 启动Unity Hub并创建新项目 2. 熟悉Unity编辑器界面 3. 添加基本对象 4. 调整对象属性 5. 添加光源 三、运行与预览 引言 Unity&…

netty 自定义客户端连接池和channelpool

目录标题 客户端池化运行分析问题修复 客户端池化 通信完成之后,一般要关闭channel,释放内存。但是与一个服务器频繁的打开关闭浪费资源。 通过连接池,客户端和服务端之间可以创建多个 TCP 连接,提升消息的收发能力,同…

【深度学习】VGG-16原理及代码实现

1.原理及介绍 2.代码实现 2.1model.py import torch from torch import nn from torchsummary import summary import torch.nn.functional as Fclass VGG16(nn.Module):def __init__(self):super(VGG16, self).__init__()self.block1 nn.Sequential( # 用一个序列&#xf…

51单片机嵌入式开发:13、STC89C52RC 之 RS232与电脑通讯

STC89C52RC 之 RS232与电脑通讯 第十三节课,RS232与电脑通讯1 概述2 Uart介绍2.1 概述2.2 STC89C52UART介绍2.3 STC89C52 UART寄存器介绍2.4 STC89C52 UART操作 3 C51 UART总结 第十三节课,RS232与电脑通讯 1 概述 RS232(Recommended Stand…

Github报错:Kex_exchange_identification: Connection closed by remote host

文章目录 1. 背景介绍2. 排查和解决方案 1. 背景介绍 Github提交或者拉取代码时,报错如下: Kex_exchange_identification: Connection closed by remote host fatal: Could not read from remote repository.Please make sure you have the correct ac…

HTML5大作业三农有机,农产品,农庄,农旅网站源码

文章目录 1.设计来源1.1 轮播图页面头部效果1.2 栏目列表页面效果1.3 页面底部导航效果 2.效果和源码2.1 源代码 源码下载万套模板,程序开发,在线开发,在线沟通 作者:xcLeigh 文章地址:https://blog.csdn.net/weixin_4…

计算机三级嵌入式笔记(一)—— 嵌入式系统概论

目录 考点1 嵌入式系统 考点2 嵌入式系统的组成与分类 考点3 嵌入式系统的分类与发展 考点4 SOC芯片 考点5 数字(电子)文本 考点6 数字图像 考点7 数字音频与数字视频 考点8 数字通信 考点9 计算机网络 考点10 互联网 考纲(2023&am…

2、如何发行自己的数字代币(truffle智能合约项目实战)

2、如何发行自己的数字代币(truffle智能合约项目实战) 1-Atom IDE插件安装2-truffle tutorialtoken3-tutorialtoken源码框架分析4-安装openzeppelin代币框架(代币发布成功) 1-Atom IDE插件安装 正式介绍基于web的智能合约开发 推…

【Vue3】响应式数据

【Vue3】响应式数据 背景简介开发环境基本数据类型对象数据类型使用 reactive 定义对象类型响应式数据使用 ref 定义对象类型响应式数据 ref 和 reactive 的对比使用原则建议 背景 随着年龄的增长,很多曾经烂熟于心的技术原理已被岁月摩擦得愈发模糊起来&#xff0…

牛客:TOP101链表相加(二)

文章目录 1. 题目描述2. 解题思路3. 代码实现 1. 题目描述 2. 解题思路 按照我们习惯的加法运算,肯定是要从个位开始相加,然后十位……,但是在链表中如果我们先运算后面的,那么接下来我们是无法找到前一位的。想要解决这个问题也很…

数模·插值和拟合算法

插值 将离散的点连成曲线或者线段的一种方法 题目中有"任意时刻任意的量"时使用插值,因为插值一定经过样本点 插值函数的概念 插值函数与样本离散的点一一重合 插值函数往往有多个区间,多个区间插值函数样态不完全一样,简单来说就…

【系统架构设计 每日一问】二 MySql主从复制延迟可能是什么原因,怎么解决

主从复制的架构设计如下图所示: 同步原理 具体到数据库之间是通过binlog和复制线程操作的: Master的更新事件(update、insert、delete)会按照顺序写入bin-log中。当Slave连接到Master的后,Master机器会为Slave开启,binlog dump线程,该线程…

H3CNE(计算机网络的概述)

1. 计算机网络的概述 1.1 计算机网络的三大基本功能 1. 资源共享 2. 分布式处理与负载均衡 3. 综合信息服务 1.2 计算机网络的三大基本类型 1.3 网络拓扑 定义: 网络设备连接排列的方式 网络拓扑的类型: 总线型拓扑: 所有的设备共享一…

Vue3 --- 路由

路由就是一组key-value的对应关系;多个路由,需要经过路由器的管理。 1. 基本切换效果 安装路由器 npm i vue-router /router/index.ts // import { createRouter, createWebHistory } from vue-router import Home from /components/Home.vue import…

萝卜快跑爆火的背后,美格智能如何助力无人车商业化?

近期,“订单量超过600万单”等夺人眼球的信息,让无人驾驶出租车“萝卜快跑”从江城武汉爆火出圈,在2024年的炎炎夏日为这座大火炉再添了一把火。热度背后,不少地方主管部门,近期也纷纷针对无人驾驶出租车、无人驾驶运输…

基于术语词典干预的机器翻译挑战赛笔记Task2 #Datawhale AI 夏令营

上回: 基于术语词典干预的机器翻译挑战赛笔记Task1 跑通baseline Datawhale AI 夏令营-CSDN博客文章浏览阅读718次,点赞11次,收藏8次。基于术语词典干预的机器翻译挑战赛笔记Task1 跑通baselinehttps://blog.csdn.net/qq_23311271/article/d…

C++树形结构(2 树的直径)

目录 1.定义: 2.直径的性质: 3.树的直径求解方法: 4.直径端点求解方法: 朴素方法: 优化方法: 5.例题: 6.直径公共点: 7.例题: 8.去掉再加上: 9.例…