iOS ------ tagged Pointer 内存对齐

一,tagged Pointer

为了节省内存和提高执行效率,苹果在64bit程序中引入了Tagged Pointer计数,用于优化NSNumber, NSDate, NSString等小对象的存储。一个指针或地址区域,除了放对象地址之外,也可以放其他额外的信息,并将其中的一些bit位作为tag标记区分,这就叫做Tagged Pointer

从占用内存来看

指针类型的大小通常也是与 CPU 位数相关,一个指针所在 32 bit 下占用 4 个字节,在 64 bit 下占用 8 个字节。
NSNumber等对象的指针中存储的数据变成了Tag+Data形式(Tag为特殊标记,用于区分NSNumber、NSDate、NSString等对象类型;Data为对象的值)。这样使用一个NSNumber对象只需要 8 个字节指针内存。当指针的 8 个字节不够存储数据时,才会在将对象存储在堆上。

在 64 bit 下,如果没有使用Tagged Pointer的话,为了使用一个NSNumber对象就需要 8 个字节指针内存和 32 个字节对象内存。

    NSInteger i = 0xFFFFFFFFFFFFFF;NSNumber *number = [NSNumber numberWithInteger:i];NSLog(@"%zd", malloc_size((__bridge const void *)(number))); // 32NSLog(@"%zd", sizeof(number)); // 8

使用了Tagged Pointer且指针的8歌字节够存储数据,NSNumber对象的值直接存储在了指针上,不会在堆上申请内存。则使用一个NSNumber对象只需要指针的 8 个字节内存就够了,大大的节省了内存占用。

NSInteger i = 1;NSNumber *number = [NSNumber numberWithInteger:i];NSLog(@"%zd", malloc_size((__bridge const void *)(number))); // 0NSLog(@"%zd", sizeof(number)); // 8

从效率上来看

为了使用一个NSNumber对象,需要在堆上为其分配内存,还要维护它的引用计数,管理它的生命周期,影响执行的效率

NSNumber

int main(int argc, const char * argv[]) {@autoreleasepool {NSNumber *number1 = @1;NSNumber *number2 = @2;NSNumber *number3 = @3;NSNumber *number4 = @(0xFFFFFFFFFFFFFFFF);NSLog(@"%p %p %p %p", number1, number2, number3, number4);}return 0;
}
// 关闭 Tagged Pointer 数据混淆后:0x127 0x227 0x327 0x600003a090e0
// 关闭 Tagged Pointer 数据混淆前:0xaca2838a63a4fb34 0xaca2838a63a4fb04 0xaca2838a63a4fb14 0x600003a090e0

number1~number3指针为Tagged Pointer类型,可以看到对象的值都存储在了指针中,对应0x1、0x2、0x3。而number4由于数据过大,指针的8个字节不够存储,所以在堆中分配了内存。

0x127 中的 2 和 7 表示什么?
我们先来看这个7,0x127为十六进制表示,7的二进制为0111。最后一位1是Tagged Pointer标识位,代表这个指针是Tagged Pointer。前面的011是类标识位,对应十进制为3,表示NSNumber类。

可以在Runtime源码objc4中查看NSNumber、NSDate、NSString等类的标识位

// objc-internal.h
{OBJC_TAG_NSAtom            = 0, OBJC_TAG_1                 = 1, OBJC_TAG_NSString          = 2, OBJC_TAG_NSNumber          = 3, OBJC_TAG_NSIndexPath       = 4, OBJC_TAG_NSManagedObjectID = 5, OBJC_TAG_NSDate            = 6,......
}

0x127 中的 2(即倒数第二位)又代表什么呢?

倒数第二位用来表示数据类型。

Tagged Pointer倒数第二位对应数据类型:

0: char
1: short
2: int
3: long
4: float
5: double

在这里插入图片描述

NSString

int main(int argc, const char * argv[]) {@autoreleasepool {NSString *a = @"a";NSMutableString *b = [a mutableCopy];NSString *c = [a copy];NSString *d = [[a mutableCopy] copy];NSString *e = [NSString stringWithString:a];NSString *f = [NSString stringWithFormat:@"f"];NSString *string1 = [NSString stringWithFormat:@"abcdefg"];NSString *string2 = [NSString stringWithFormat:@"abcdefghi"];NSString *string3 = [NSString stringWithFormat:@"abcdefghij"];}return 0;
}
a: 0x100002038, __NSCFConstantString, 18446744073709551615
b: 0x10071f3c0, __NSCFString, 1
c: 0x100002038, __NSCFConstantString, 18446744073709551615
d: 0x6115, NSTaggedPointerString, 18446744073709551615
e: 0x100002038, __NSCFConstantString, 18446744073709551615
f: 0x6615, NSTaggedPointerString, 18446744073709551615
string1: 0x6766656463626175, NSTaggedPointerString, 18446744073709551615
string2: 0x880e28045a54195, NSTaggedPointerString, 18446744073709551615
string3: 0x10071f6d0, __NSCFString, 1 */

为Tagged Pointer的有d、f、string1、string2指针。它们的指针值分别为0x6115、0x6615 、0x6766656463626175、0x880e28045a54195。
其中0x61、0x66、0x67666564636261分别对应字符串的 ASCII 码。
最后一位5的二进制为0101,最后一位1是代表这个指针是Tagged Pointer,010对应十进制为2,表示NSString类。
倒数第二位1、1、7、9代表字符串长度

在这里插入图片描述

NSString的类型NSString类型

注意: MacOS与iOS平台下的Tagged Pointer有差别:

MacOS下采用 LSB(Least Significant Bit,即最低有效位)为Tagged Pointer标识位
iOS下则采用MSB(Most Significant Bit,即最高有效位)为Tagged Pointer标识位。

下图是iOS下NSNumber的Tagged Pointer位视图: Tagged Pointer 位视图

在这里插入图片描述

下图是iOS下NSString的Tagged Pointer位视图:

在这里插入图片描述

相关题目

执行以下两段代码,有什么区别?

    dispatch_queue_t queue = dispatch_get_global_queue(0, 0);for (int i = 0; i < 1000; i++) {dispatch_async(queue, ^{self.name = [NSString stringWithFormat:@"abcdefghij"];});}
    dispatch_queue_t queue = dispatch_get_global_queue(0, 0);for (int i = 0; i < 1000; i++) {dispatch_async(queue, ^{self.name = [NSString stringWithFormat:@"abcdefghi"];});}

第一段代码会报错

第一段代码中self.name__NSCFString类型,而第二段代码中为NSTaggedPointerString类型。__NSCFString存储在堆上,它是个正常对象,需要维护引用计数的。self.name通过setter方法为其赋值。而setter方法的实现如下:

- (void)setName:(NSString *)name {if(_name != name) {[_name release];_name = [name retain]; // or [name copy]}
}

我们异步并发执行setter方法,可能就会有多条线程同时执行[_name release],连续release两次就会造成对象的过度释放,导致Crash。

解决办法:

  • 使用atomic属性关键字。
  • 加锁

而第二段代码中的NSString为NSTaggedPointerString类型,在objc_release函数中会判断指针是不是TaggedPointer类型,是的话就不对对象进行release操作,也就避免了因过度释放对象而导致的Crash,因为根本就没执行释放操作。

objc_release(id obj)
{if (!obj) return;if (obj->isTaggedPointer()) return;return obj->release();
}

二,内存对齐

在iO64位系统中,采用8字节对齐(计算属性内存空间大小总和),最小内存大小为16个字节,实际分配空间是16字节对齐。

在计算机中,内存大小的基本单位是字节,理论上可以在任意地址在访问某种基本数据类型。而计算机并非按早字节大小读写内存,而是以2,4,8的字节块来读写内存。因此,编译器会对基本数据类型的合法地址做出一些限制,地址必须是2,4,8的倍数。那么就要求各种数据类型按早一定的规则在空间上排列,这就是内存对齐

对象的属性内存布局遵循下面规则:

  • 结构体变量的首地址是其最长基本类型成员的整数倍
  • 结构体的总大小为结构体最大基本类型成员变量的整数倍
  • 结构体每个成员相对于结构体首地址的偏移量(offset)都是成员大小的整数倍,如不满足,对前一个成员填充字节以满足
  • 如果一个结构体内部成员变量包括其他结构体成员,则结构体成员要从其内部成员最大元素大小的整数倍地址开始储存
  • 结构体中的成员变量都是分配在连续的内存空间中
  • 结构体成员顺序不同,会导致所占内存空间不一样;对象经过编译器优化,就不会有这个问题

实例:

#import <Foundation/Foundation.h>
#import <objc/runtime.h>
#import <malloc/malloc.h>
#import "Person.h"
int main(int argc, const char * argv[]) {@autoreleasepool {//person 有name,age属性//如果对象创建了没去赋值属性,它会是内存假地址Person* person = [[Person alloc] init];person.name = @"111";person.age = 20;//class_getInstanceSize依赖于<ojc/runtime.h>返回创建一个实例对象的内存大小就是获取对象的全部属性的大小NSLog(@"class_getInstanceSize = %zd", class_getInstanceSize([Person class]));//输出24//malloc_size依赖于<malloc/malloc.h>返回给系统分配给对象的内存大小,而且最小是16字节。就是获取对象的全部属性的大小总和,然后按8位对齐获得,不足8位补齐8位。        NSLog(@"malloc_size = %zd", malloc_size((__bridge  const void*)person));//输出32//最后 sizeOf 得到的内存大小都是8个字节, 是因为 sizeOf获取的是类型所分配内存,所传参数为指针类型,所以最后得到的都是8NSLog(@"sizeof  = %zd", sizeof(person));//输出8}return 0;
}
  • class_getInstance 获取实例对象在内存对齐的情况下,所占大小
  • malloc_size 获取的是实际系统所分配的内存大小
  • sizeOf 获取类型所占字节大小,如果传的是对象,永远都是8;

内存对齐的原因

  • 性能上的提升
    从内存的占用的角度来讲,对齐后比未对齐有些情况反而增加了内存分配的开支。数据结构(尤其是栈)应该静可能在自然边界对齐,为了访问为对齐的内存,处理器会进行两次的内存访问;而对齐的内存访问仅需要一次的访问,最重要提高了内存系统的性能。
  • 跨平台
    某些硬性的平台不能访问任意地址上的任意数据的,只能 处理特定类型的数据,否则会导致硬件基基层的错误。

注意:

如果给类添加方法,类实例对象内存大小是不会变化的,为什么那?
创建对象的时候并不会给对象的方法分配内存,只会给属性,成员变量分配内存。一个类可能创建多个实例,每个实例的方法都一样,没有差异性,所有对象共用这块存储方法的内存,实际上方法都存储在类实例里面了,一个类只有一个类实例,由系统创建。这么设计的好处就是节省空间,加快初始化速度等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/47292.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

240717.LeetCode——2974.最小数字游戏

题目描述 你有一个下标从 0 开始、长度为 偶数 的整数数组 nums &#xff0c;同时还有一个空数组 arr 。Alice 和 Bob 决定玩一个游戏&#xff0c;游戏中每一轮 Alice 和 Bob 都会各自执行一次操作。游戏规则如下&#xff1a; 每一轮&#xff0c;Alice 先从 nums 中移除一个 …

转移C盘中的conda环境(包括.condarc文件修改,environment.txt文件修改,conda报错)

conda环境一般是默认安装到C盘的&#xff0c;若建立多个虚拟环境&#xff0c;时间长了&#xff0c;容易让本不富裕的C盘更加雪上加霜&#xff0c;下面给出将conda环境从C盘转移到D盘的方法。 目录 电脑软硬件转移方法查看当前conda目录转移操作第一步&#xff1a;.condarc文件修…

Apache Flink 入门

零、概述 Apache Flink 是一个高性能的开源分布式流处理框架&#xff0c;专注于实时数据流的处理。 它设计用于处理无界和有界数据流&#xff0c;在内存级速度下提供高效的有状态计算。 Flink 凭借其独特的Checkpoint机制和Exactly-Once语义&#xff0c;确保数据处理的准确性…

vue中:class、watch、v-show使用

1、:class 指令 在 Vue.js 中&#xff0c;:class 指令&#xff08;或 v-bind:class&#xff09;允许你动态地绑定 CSS 类到一个元素。这个指令有两种主要的使用方式&#xff1a;绑定一个对象或者绑定一个数组。 1.1、:class{} 对象语法 对象语法允许你基于条件来添加或移除类…

如何在网页中对视频进行截图

在网页开发中&#xff0c;我们经常需要对视频进行截图&#xff0c;以便在文章或博客中展示视频的某个瞬间。HTML5 提供了强大的 <video> 标签&#xff0c;使得在网页中嵌入视频变得简单。但是&#xff0c;如何对这些视频进行截图呢&#xff1f;本文将介绍一种简单的方法&…

只用 CSS 能玩出什么花样?

在前端开发领域&#xff0c;CSS 不仅仅是一种样式语言&#xff0c;它更像是一位多才多艺的艺术家&#xff0c;能够创造出令人惊叹的视觉效果。本文将带你探索 CSS 的无限可能&#xff0c;从基本形状到动态动画&#xff0c;从几何艺术到仿生设计&#xff0c;只用 CSS 就能玩出令…

Vscode中Github copilot插件无法使用(出现感叹号)解决方案

1、击扩展或ctrl shift x ​​​​​​​ 2、搜索查询或翻找到Github compilot 3、点击插件并再左侧点击登录github 点击Sign up for a ... 4、跳转至github登录页&#xff0c;输入令牌完成登陆后返回VScode 5、插件可以正常使用

社会科学战线

《社会科学战线》&#xff08;以下简称《战线》&#xff09;是吉林省社会科学院主办的大型综合性人文社会科学类期刊&#xff0c;创刊于1978年5月&#xff0c;月刊&#xff0c;每期约50万字。内容涵盖哲学、历史学、文学、经济学、政治学、法学、社会学、教育学等人文社会科学学…

微服务实战系列之玩转Docker(三)

前言 镜像&#xff08;Image&#xff09;作为Docker的“水源”&#xff0c;取之于它&#xff0c;用之于它。这对于立志成为运维管理的撒手锏——Docker而言&#xff0c;重要性不言而喻。 我们在虚拟机时代&#xff08;当然现在依然ing…&#xff09;&#xff0c;如何快速完成…

成为CMake砖家(5): VSCode CMake Tools 插件基本使用

大家好&#xff0c;我是白鱼。 之前提到过&#xff0c;白鱼的主力 编辑器/IDE 是 VSCode&#xff0c; 也提到过使用 CMake Language Support 搭配 dotnet 执行 CMakeLists.txt 语法高亮。 对于阅读 CMakeLists.txt 脚本&#xff0c; 这足够了。 而在 C/C 开发过程中&#xff…

NXP i.MX8系列平台开发讲解 - 3.19 Linux TTY子系统(二)

专栏文章目录传送门&#xff1a;返回专栏目录 Hi, 我是你们的老朋友&#xff0c;主要专注于嵌入式软件开发&#xff0c;有兴趣不要忘记点击关注【码思途远】 目录 1. Linux 串口驱动 1.1 Uart 驱动注册流程 1.2 uart 操作函数 1.3 line discipline 2. Linux tty应用层使用…

FPGA 实现DDR4的读写

1 硬件设计 FPGA 端&#xff1a; DDR4: 2 验证方案 3 仿真验证 4 DDR4 下板验证

《昇思25天学习打卡营第25天|第10天》

今天是打卡的第十天&#xff0c;今天开始学应用实践中的LLM原理和实践&#xff0c;今天学的是基于MindSpore实现BERT对话情绪识别。最先了解的是BERT模型的简介&#xff08;来自变换器的双向编码器表征量&#xff08;Bidirectional Encoder Representations from Transformers&…

递归锁与普通锁的区别

什么是锁&#xff1f; 在多线程编程中&#xff0c;锁是一种机制&#xff0c;用来确保某些代码块在同一时间只能被一个线程执行。想象一下&#xff0c;你和你的朋友们都想同时进入一个只有一把椅子的房间。为了避免混乱&#xff0c;你们需要一个锁来控制进入的顺序。 普通锁&a…

PHP 包含

PHP 包含 PHP 是一种广泛使用的开源服务器端脚本语言,它在 web 开发中扮演着重要的角色。PHP 的一个核心特性是其能够包含其他文件,这允许开发者将代码分割成可重用的模块,从而提高代码的可维护性和组织性。本文将深入探讨 PHP 中的文件包含机制,包括其工作原理、使用场景…

Java —— 内部类

Java内部类 1.什么是内部类&#xff1f; 将一个类A定义在另一个类B里面&#xff0c;里面的类A就称为内部类&#xff08;InnerClass&#xff09;&#xff0c;类B则称为外部类&#xff08;OuterClass&#xff09;。 2.为什么需要内部类&#xff1f; 具体来说&#xff0c;当一…

大数据量批处理场景处理

大数据量多线程批处理工具&#xff1a;MultiThreadMamager: 基于线程池实现的动态管理工具 基于ExecutorServiceTaskAbstract抽象实现内部方法&#xff1a;material()获取数据、processing()取数结果处理。 由管理工具去调用线程池执行任务和任务自动迭代处理 - Gitee.com 主要…

springboot 重新注册 bean

项目中&#xff0c;有时候会遇到这样的需求&#xff1a;更新配置后&#xff0c;需要重新处理相关的业务&#xff0c;但是不想重启应用。例如 elasticsearch 证书过期后&#xff0c;需要更换 http_ca.crt &#xff0c;但是又不想重启应用。 本人对 spring IOC 的源码不算深入&a…

NodeJS技巧:在循环中管理异步函数的执行次数

背景介绍 在现代Web开发中&#xff0c;NodeJS因其高效的异步处理能力而备受青睐。尤其在数据抓取、网络爬虫等应用场景中&#xff0c;NodeJS的非阻塞I/O特性使其成为不二之选。然而&#xff0c;在实际编程过程中&#xff0c;我们经常会遇到一个棘手的问题——如何在循环中控制…

HTC 10 刷系统 LineageOS 19.1 Android 12

解锁手机 解锁或导致数据全部清除&#xff0c;注意保存 Bootloader解锁&#xff0c;S-ON可以不用解锁&#xff08;好像可以绕过解锁安装twrp&#xff0c;暂时没尝试&#xff09; HTC 官方 Unlock Bootloader HTC Desire 20 pro 可以不通过官方网站解锁 adb reboot bootload…