前言:Hello大家好,我是小哥谈。YOLOv8是一种基于深度学习的实时物体检测算法,其通过将物体检测任务转化为目标框回归问题,并使用卷积神经网络实现高效的特征提取和目标分类。然而,YOLOv8在处理一些复杂场景和小目标时可能存在一定的性能限制。为了克服YOLOv8的局限性,清华大学在ICCV会议上发布了名为RepViT的移动端网络架构。RepViT通过自注意力机制(self-attention)和
前言:Hello大家好,我是小哥谈。YOLOv8是一种基于深度学习的实时物体检测算法,其通过将物体检测任务转化为目标框回归问题,并使用卷积神经网络实现高效的特征提取和目标分类。然而,YOLOv8在处理一些复杂场景和小目标时可能存在一定的性能限制。为了克服YOLOv8的局限性,清华大学在ICCV会议上发布了名为RepViT的移动端网络架构。RepViT通过自注意力机制(self-attention)和
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/439.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!