背景介绍
OpenMMLab项目中构建数据集的基础类BaseDataset类的时候,对多进程数据加载有一个优化,叫做 ‘‘’序列化’。
先看代码部分
class BaseDataset(Dataset):r"""BaseDataset for open source projects in OpenMMLab.The annotation format is shown as follows... code-block:: none{"metainfo":{"dataset_type": "test_dataset","task_name": "test_task"},"data_list":[{"img_path": "test_img.jpg","height": 604,"width": 640,"instances":[{"bbox": [0, 0, 10, 20],"bbox_label": 1,"mask": [[0,0],[0,10],[10,20],[20,0]],"extra_anns": [1,2,3]},{"bbox": [10, 10, 110, 120],"bbox_label": 2,"mask": [[10,10],[10,110],[110,120],[120,10]],"extra_anns": [4,5,6]}]},]}Args:ann_file (str, optional): Annotation file path. Defaults to ''.metainfo (Mapping or Config, optional): Meta information fordataset, such as class information. Defaults to None.data_root (str, optional): The root directory for ``data_prefix`` and``ann_file``. Defaults to ''.data_prefix (dict): Prefix for training data. Defaults todict(img_path='').filter_cfg (dict, optional): Config for filter data. Defaults to None.indices (int or Sequence[int], optional): Support using first fewdata in annotation file to facilitate training/testing on a smallerserialize_data (bool, optional): Whether to hold memory usingserialized objects, when enabled, data loader workers can useshared RAM from master process instead of making a copy. Defaultsto True.pipeline (list, optional): Processing pipeline. Defaults to [].test_mode (bool, optional): ``test_mode=True`` means in test phase.Defaults to False.lazy_init (bool, optional): Whether to load annotation duringinstantiation. In some cases, such as visualization, only the metainformation of the dataset is needed, which is not necessary toload annotation file. ``Basedataset`` can skip load annotations tosave time by set ``lazy_init=True``. Defaults to False.max_refetch (int, optional): If ``Basedataset.prepare_data`` get aNone img. The maximum extra number of cycles to get a validimage. Defaults to 1000.Note:BaseDataset collects meta information from ``annotation file`` (thelowest priority), ``BaseDataset.METAINFO``(medium) and ``metainfoparameter`` (highest) passed to constructors. The lower priority metainformation will be overwritten by higher one.Note:Dataset wrapper such as ``ConcatDataset``, ``RepeatDataset`` .etc.should not inherit from ``BaseDataset`` since ``get_subset`` and``get_subset_`` could produce ambiguous meaning sub-dataset whichconflicts with original dataset.Examples:>>> # Assume the annotation file is given above.>>> class CustomDataset(BaseDataset):>>> METAINFO: dict = dict(task_name='custom_task',>>> dataset_type='custom_type')>>> metainfo=dict(task_name='custom_task_name')>>> custom_dataset = CustomDataset(>>> 'path/to/ann_file',>>> metainfo=metainfo)>>> # meta information of annotation file will be overwritten by>>> # `CustomDataset.METAINFO`. The merged meta information will>>> # further be overwritten by argument `metainfo`.>>> custom_dataset.metainfo{'task_name': custom_task_name, dataset_type: custom_type}"""METAINFO: dict = dict()_fully_initialized: bool = Falsedef __init__(self,ann_file: Optional[str] = '',metainfo: Union[Mapping, Config, None] = None,data_root: Optional[str] = '',data_prefix: dict = dict(img_path=''),filter_cfg: Optional[dict] = None,indices: Optional[Union[int, Sequence[int]]] = None,serialize_data: bool = True,pipeline: List[Union[dict, Callable]] = [],test_mode: bool = False,lazy_init: bool = False,max_refetch: int = 1000):self.ann_file = ann_fileself._metainfo = self._load_metainfo(copy.deepcopy(metainfo))self.data_root = data_rootself.data_prefix = copy.copy(data_prefix)self.filter_cfg = copy.deepcopy(filter_cfg)self._indices = indicesself.serialize_data = serialize_dataself.test_mode = test_modeself.max_refetch = max_refetchself.data_list: List[dict] = []self.data_bytes: np.ndarray# Join paths.self._join_prefix()# Build pipeline.self.pipeline = Compose(pipeline)# Full initialize the dataset.if not lazy_init:self.full_init()@force_full_initdef get_data_info(self, idx: int) -> dict:"""Get annotation by index and automatically call ``full_init`` if thedataset has not been fully initialized.序列化方式通过内存映射和反序列化,可能更适合处理大规模数据或减少内存占用,而非序列化方式则更简单直接,适用于数据规模较小或内存资源充足的情况。Args:idx (int): The index of data.Returns:dict: The idx-th annotation of the dataset.无论哪种方式,最后得到的 data_info 变量都包含了索引 idx 对应的数据。- 序列化数据加载时,通过地址计算、内存视图和反序列化,从字节数组中提取数据;- 非序列化数据加载时,直接从已存储的对象列表中复制所需数据。两种方式适应了不同的存储场景和性能需求。"""if self.serialize_data:start_addr = 0 if idx == 0 else self.data_address[idx - 1].item()end_addr = self.data_address[idx].item()bytes = memoryview(self.data_bytes[start_addr:end_addr]) # type: ignoredata_info = pickle.loads(bytes) # type: ignoreelse:data_info = copy.deepcopy(self.data_list[idx])# Some codebase needs `sample_idx` of data information. Here we convert# the idx to a positive number and save it in data information.if idx >= 0:data_info['sample_idx'] = idxelse:data_info['sample_idx'] = len(self) + idxreturn data_infodef full_init(self):"""Load annotation file and set ``BaseDataset._fully_initialized`` toTrue.If ``lazy_init=False``, ``full_init`` will be called during theinstantiation and ``self._fully_initialized`` will be set to True. If``obj._fully_initialized=False``, the class method decorated by``force_full_init`` will call ``full_init`` automatically.Several steps to initialize annotation:- load_data_list: Load annotations from annotation file.- filter data information: Filter annotations according tofilter_cfg.- slice_data: Slice dataset according to ``self._indices``- serialize_data: Serialize ``self.data_list`` if``self.serialize_data`` is True."""# check是不是 self._fully_initialized 和 self.serialize_data 不能同时为 trueif self._fully_initialized:return# load data informationself.data_list = self.load_data_list()# filter illegal data, such as data that has no annotations.self.data_list = self.filter_data()# Get subset data according to indices.if self._indices is not None:self.data_list = self._get_unserialized_subset(self._indices)# serialize data_listif self.serialize_data:self.data_bytes, self.data_address = self._serialize_data()self._fully_initialized = True
BaseDataset类中定义了一些可能会影响内存使用的方法和属性,例如:
- data_list:存储数据集所有样本的列表,每个样本都是一个字典,包含了图像路径、尺寸和实例信息等。
- serialize_data:一个布尔值,指示是否在初始化时将data_list序列化以节省内存。当启用时,数据加载器的工作进程可以使用主进程的共享RAM,而不是进行复制。
- _serialize_data和_get_serialized_subset:这些方法用于序列化和获取序列化数据的子集,这有助于在多进程数据加载时减少内存消耗。
在分布式训练中,如果每个GPU rank都加载完整的data_list,那么确实会导致内存的重复使用。为了解决这个问题,serialize_data属性被设置为True时,可以通过序列化数据来节省内存,这样每个工作进程就可以共享主进程的RAM,而不是各自复制一份数据。
serialize_data
在多进程数据加载的场景下,比如使用PyTorch的DataLoader时,每个工作进程(worker)通常需要加载数据集的一部分来并行处理。如果没有序列化处理,每个工作进程都会复制一份完整的data_list到自己的内存空间中,这会导致内存的大量重复使用,特别是在数据集很大的情况下。
通过serialize_data参数启用序列化后,数据集的样本信息会被转换成一个二进制格式的数组(data_bytes),并且每个样本信息的起始和结束位置会被记录在一个地址数组(data_address)中。这样,当数据加载器的工作进程需要获取数据时,它们可以直接从共享的data_bytes数组中按地址提取所需的样本信息,而无需复制整个数据列表。这意味着所有的工作进程都可以直接使用主进程中的共享内存,从而大大减少了内存的使用。
进一步理解 serialize data
用一个餐厅的比喻来理解serialize_data
的概念。
你经营一家非常受欢迎的餐厅,这家餐厅的菜单上有100道菜。每天,你都需要为顾客提供这些菜,但是每道菜的需求量是不同的。为了高效地为顾客服务,你有两种选择:
-
不序列化(
serialize_data=False
):
这就像你在餐厅里为每个服务员准备一份完整的菜单,每份菜单上都有100道菜。每天早上,服务员们会从厨房领取他们需要的所有食材,准备一天的工作。这意味着每个服务员都需要携带大量的食材,而且厨房也需要准备足够的食材来满足所有服务员的需求。这在餐厅规模较小、顾客较少时是可行的,但如果餐厅很大,或者顾客非常多,这就会导致厨房的食材库存压力巨大,效率低下。 -
序列化(
serialize_data=True
):
现在,你决定改变策略。厨房不再为每个服务员准备一份完整的菜单,而是将每道菜的食材打包成单独的小包裹,并在每个包裹上贴上标签,说明这是哪道菜的食材。服务员们只需要根据顾客的订单来领取对应的食材包裹。这样,厨房只需要准备足够的食材来满足所有顾客的总需求,而不是每个服务员的需求。服务员们也不需要携带大量的食材,他们只需要根据需要领取相应的包裹即可。这种方式大大减少了食材的浪费和厨房的存储压力,提高了服务效率。
在数据集处理的上下文中,serialize_data
的作用就像上述例子中的食材打包。如果没有序列化,每个工作进程(服务员)都需要一份完整的数据集副本(完整的菜单),这会导致大量的内存占用和数据重复。启用序列化后,数据集的每个样本都被打包成一个二进制格式的“包裹”(data_bytes
),并附有一个地址标签(data_address
),工作进程只需要根据需要加载和处理这些“包裹”,而不是整个数据集,这样可以显著减少内存的使用,提高数据处理的效率。