如何优化 PostgreSQL 中对于复杂数学计算的查询?

文章目录

    • 一、理解复杂数学计算的特点
    • 二、优化原则
      • (一)索引优化
      • (二)查询重写
      • (三)数据库配置调整
      • (四)使用数据库内置函数的优势
    • 三、具体的优化方案和示例
      • (一)合理使用索引
      • (二)查询重写示例
      • (三)使用数据库内置函数
      • (四)调整配置参数
    • 四、性能测试和监测
    • 五、实际案例分析
      • (1)创建必要的索引
      • (2)查询重写
      • (3)验证优化效果
    • 六、注意事项
      • (一)过度索引的风险
      • (二)函数索引的局限性
      • (三)配置调整的谨慎性
      • (四)测试和验证

美丽的分割线

PostgreSQL


在 PostgreSQL 中处理复杂数学计算的查询时,性能优化是至关重要的。以下将详细探讨如何优化这类查询,并提供相应的解决方案和示例代码。

美丽的分割线

一、理解复杂数学计算的特点

复杂数学计算通常涉及多个操作数和运算,可能包括三角函数、指数函数、对数函数等。这些计算往往对计算资源的需求较高,而且在数据库中的处理可能会较为耗时。

美丽的分割线

二、优化原则

(一)索引优化

  1. 对于经常参与查询条件的列,创建适当的索引。例如,如果经常根据某个数值列进行范围查询,可以创建 B-tree 索引。
  2. 对于涉及数学计算的表达式,如果其结果有较高的选择性,也可以考虑创建基于函数的索引。

(二)查询重写

  1. 检查查询的逻辑,尝试将复杂的计算分解为多个简单的步骤,以便更好地利用索引和优化器的能力。
  2. 避免在查询中进行不必要的计算,将可以在应用层完成的计算移到应用层。

(三)数据库配置调整

根据系统的硬件资源和工作负载,调整 PostgreSQL 的相关配置参数,如共享缓冲区大小、工作内存等。

(四)使用数据库内置函数的优势

PostgreSQL 提供了丰富的内置数学函数,这些函数通常经过优化,能够高效地执行计算。

美丽的分割线

三、具体的优化方案和示例

(一)合理使用索引

假设我们有一个包含用户交易数据的表 transactions ,其中有列 amount(交易金额)和 transaction_date(交易日期)。如果经常需要查询某个时间段内交易金额大于特定值的记录,可以创建以下索引:

CREATE INDEX transactions_amount_date_idx ON transactions (amount, transaction_date);

(二)查询重写示例

假设我们有一个复杂的查询来计算某个时间段内交易金额的平均值,原始查询可能如下:

SELECT AVG((amount * 1.05) + 10) AS adjusted_avg_amount
FROM transactions
WHERE transaction_date BETWEEN '2023-01-01' AND '2023-12-31';

优化后的查询可以将复杂计算提取到子查询中:

SELECT AVG(adjusted_amount) AS adjusted_avg_amount
FROM(SELECT (amount * 1.05) + 10 AS adjusted_amountFROM transactionsWHERE transaction_date BETWEEN '2023-01-01' AND '2023-12-31') AS subquery;

(三)使用数据库内置函数

例如,计算平方根可以使用 PostgreSQL 内置的 sqrt 函数:

SELECT sqrt(amount) AS square_root_amount FROM transactions;

(四)调整配置参数

  1. 增加共享缓冲区大小:
    postgresql.conf 文件中,修改 shared_buffers 的值,例如:
shared_buffers = 256MB
  1. 调整工作内存:
    根据系统的内存情况,适当增加 work_mem 的值,以提高复杂计算的性能:
work_mem = 16MB

美丽的分割线

四、性能测试和监测

在进行优化后,需要进行性能测试来验证优化的效果。可以使用 PostgreSQL 提供的 EXPLAIN 命令来查看查询的执行计划,分析查询的执行步骤和资源使用情况。

例如:

EXPLAIN SELECT AVG((amount * 1.05) + 10) AS adjusted_avg_amount
FROM transactions
WHERE transaction_date BETWEEN '2023-01-01' AND '2023-12-31';

同时,还可以使用数据库监控工具来监测数据库的性能指标,如 CPU 使用率、内存使用情况、IO 等待时间等,以便及时发现并解决潜在的性能问题。

美丽的分割线

五、实际案例分析

假设有一个销售数据表 sales ,包含列 product_id(产品 ID)、sales_amount(销售金额)和 sales_date(销售日期)。我们需要查询在某个月份中,每种产品的销售金额乘以特定系数后的总和,并按照总和降序排序。

原始查询可能如下:

SELECT product_id, SUM(sales_amount * 1.1) AS total_adjusted_sales
FROM sales
WHERE EXTRACT(MONTH FROM sales_date) = 5
GROUP BY product_id
ORDER BY total_adjusted_sales DESC;

分析这个查询,我们可以考虑以下优化步骤:

(1)创建必要的索引

首先,为 sales_dateproduct_id 列创建索引,以及基于表达式 sales_amount * 1.1 的函数索引。

CREATE INDEX sales_date_idx ON sales (sales_date);
CREATE INDEX product_id_idx ON sales (product_id);
CREATE INDEX sales_amount_adjusted_idx ON sales ((sales_amount * 1.1));

(2)查询重写

将复杂的计算移到子查询中,以提高可读性和优化性能。

SELECT product_id, total_adjusted_sales
FROM(SELECT product_id, SUM(sales_amount * 1.1) AS total_adjusted_salesFROM salesWHERE EXTRACT(MONTH FROM sales_date) = 5GROUP BY product_id) AS subquery
ORDER BY total_adjusted_sales DESC;

(3)验证优化效果

使用 EXPLAIN 命令查看优化前后查询的执行计划,比较它们的差异。

优化前的执行计划:

EXPLAIN SELECT product_id, SUM(sales_amount * 1.1) AS total_adjusted_sales
FROM sales
WHERE EXTRACT(MONTH FROM sales_date) = 5
GROUP BY product_id
ORDER BY total_adjusted_sales DESC;

优化后的执行计划:

EXPLAIN SELECT product_id, total_adjusted_sales
FROM(SELECT product_id, SUM(sales_amount * 1.1) AS total_adjusted_salesFROM salesWHERE EXTRACT(MONTH FROM sales_date) = 5GROUP BY product_id) AS subquery
ORDER BY total_adjusted_sales DESC;

通过比较执行计划中的索引使用情况、连接方式、排序操作等,可以评估优化的效果。如果优化后的执行计划显示更有效地利用了索引,减少了数据扫描和排序的成本,那么说明优化是有效的。

美丽的分割线

六、注意事项

(一)过度索引的风险

创建过多不必要的索引会增加数据插入、更新和删除的开销,因此要谨慎创建索引,只在经常用于查询条件、连接操作和分组的列上创建索引。

(二)函数索引的局限性

函数索引虽然可以提高特定表达式的查询性能,但并非适用于所有情况。对于计算复杂度过高或变化频繁的表达式,可能不太适合创建函数索引。

(三)配置调整的谨慎性

修改数据库配置参数时,要充分了解其含义和对系统性能的影响。不当的配置调整可能导致性能下降或系统不稳定。

(四)测试和验证

在生产环境中应用优化之前,务必在测试环境中进行充分的测试和验证,确保优化不会引入新的问题或对现有业务逻辑产生负面影响。

优化 PostgreSQL 中复杂数学计算的查询需要综合考虑索引使用、查询重写、数据库配置和内置函数等多个方面,并通过性能测试和监测不断验证和调整优化策略,以达到最佳的性能效果。


美丽的分割线

🎉相关推荐

  • 🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!
  • 📢学习做技术博主创收
  • 📚领书:PostgreSQL 入门到精通.pdf
  • 📙PostgreSQL 中文手册
  • 📘PostgreSQL 技术专栏

PostgreSQL

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/42744.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为开源自研AI框架昇思MindSpore应用案例:FCN图像语义分割

Mask R-CNN MaskRCNN是一种概念简单、灵活、通用的目标实例分割框架,在检测出图像中目标的同时,还为每一个实例生成高质量掩码。这种称为Mask R-CNN的方法,通过添加与现有边框检测分支平行的预测目标掩码分支,达到扩展Faster R-CN…

LRU 缓存机制

题目 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。 实现 LRUCache 类: LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存 int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值&a…

leetcode判断二分图

判断二分图 图的问题肯定要用到深度优先遍历或者广度优先遍历,但又不是单纯的深度优先遍历算法和广度优先遍历算法,而是需要在遍历的过程中加入与解决题目相关的逻辑。 题干中说了,这个图可能不是连通图,这个提示有什么作用呢&a…

shared_ptr 线程安全

为什么 shared_ptr 可以安全地在多个线程中共享? 循环引用 因为shared_ptr std::shared_ptr 的引用计数是线程安全的。这意味着你可以在多个线程中安全地拷贝、赋值和销毁 std::shared_ptr。然而,访问或修改 shared_ptr 所指向的对象时,需要…

昇思25天学习打卡营第20天|LSTM+CRF序列标注

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com) LSTMCRF序列标注 概述 序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标…

明日周刊-第15期

赶在周末结束前输出一把,周日的晚上大家要睡个好觉哦。 文章目录 一周热点资源分享言论歌曲推荐 一周热点 科技创新与基础设施建设 深中通道正式通车试运营 时间:6月30日 内容:国家重大工程深中通道正式通车试运营,标志着珠江口东…

深入理解Java可执行JAR文件

目录 引言JAR文件简介创建JAR文件 使用JDK的jar工具使用IDE创建JAR文件 指定Main-Class属性 在MANIFEST.MF文件中指定使用jar工具指定 运行可执行JAR文件在Maven项目中创建可执行JAR文件 配置pom.xml使用maven-jar-plugin 在Gradle项目中创建可执行JAR文件 配置build.gradle使…

MySQL中in和exists的区别

in和exists都是在 SQL 中用于检查子查询中是否存在数据的谓词,它们的区别主要体现在语法、用途、效率、错误处理以及子查询范围等方面,具体区别如下: 语法: exists:exists (子查询)in:列 in (子查询) 或 子…

Java实现布隆过滤器的几种方式

布隆过滤器应用场景: 为预防大量黑客故意发起非法的时间查询请求,造成缓存击穿,建议采用布隆过滤器的方法解决。布隆过滤器通过一个很长的二进制向量和一系列随机映射函数(哈希函数)来记录与识别某个数据是否在一个集合中。如果数据不在集合中,能被识别出来,不需要到数…

吉时利KEITHLEY KI-488驱动和说明

吉时利KEITHLEY KI-488驱动和说明

[吃瓜教程]南瓜书第6章支持向量机

0.补充知识 0.1 超平面 定义: 超平面是指在𝑛维空间中,维度为 𝑛−1的子空间。它是分割空间的一个平面。 性质: n维空间的超平面 ( w T x b 0 , 其中 w , x ∈ R n ) (w^Tx_b0,其中w,x\in \mathbb R^n) (wTxb​0,其…

【大模型】大语言模型:光鲜背后的阴影——事实准确性和推理能力的挑战

大语言模型:光鲜背后的阴影——事实准确性和推理能力的挑战 引言一、概念界定二、事实准确性的局限2.1 训练数据的偏差2.2 知识的时效性问题2.3 复杂概念的理解与表述 三、推理能力的局限3.1 表层理解与深层逻辑的脱节3.2 缺乏常识推理3.3 无法进行长期记忆和连续推…

通过端口转发实现docker容器运行时端口更改

通过端口转发实现docker容器运行时端口更改 前言启动容器查看容器ip地址端口转发 前言 关于修改docker正在运行中容器端口,网上大部分分为3类: 1. 删除原有容器重新创建;2. 改配置文件;3. 在现有容器上新提交镜像,用新镜像起新的容器。 1和3属于同一种流…

Spring Boot与Apache Kafka Streams的集成

Spring Boot与Apache Kafka Streams的集成 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 一、Apache Kafka Streams简介 Apache Kafka Streams是一个用于构…

如何在Android中实现网络通信,如HttpURLConnection和HttpClient。

在Android开发中,网络通信是一个不可或缺的功能,它允许应用与服务器交换数据,实现丰富的功能。在实现网络通信时,HttpURLConnection和HttpClient是两种常用的方式。下面将从技术难点、面试官关注点、回答吸引力以及代码举例四个方…

【学习笔记】Redis学习笔记——第8章 对象

第8章 对象 8.1 对象的类型与编码 在Redis中存储对象时,键值对全部封装为RedisObject。 8.1.1 类型(type) 记录了对象的类型,Redis存储的Key为字符串对象,而Value可以是字符串对象、列表对象、哈希对象、集合对象、有序集合对象当中的一种…

UI还原度小技巧之缩放

还原度小技巧之缩放 背景缩放 背景 我们经常会遇到UI给的设计图尺寸较大,和我们浏览器相差太大,这时候,按照UI给的尺寸直接写进代码里面的话,可能会让页面结构在我们的浏览器上面显得很大,产生横向滚动条等&#xff0…

探讨4层代理和7层代理行为以及如何获取真实客户端IP

准备工作 实验环境 IP角色192.168.1.100客户端请求IP192.168.1.100python 启动的HTTP服务192.168.1.102nginx服务192.168.1.103haproxy 服务 HTTP服务 这是一个简单的HTTP服务,主要打印HTTP报文用于分析客户端IP #!/usr/bin/env python # coding: utf-8import …

「技术分享」FDL对接金蝶云API取数

很多企业的ERP系统都在用金蝶云星空,金蝶云星空API是IT人员获取数据的重要来源, 常常用来生成定制化报表,进行数据分析,或是将金蝶云的数据与OA系统、BI工具集成。 通常情况下,IT人员需要使用Python、Java等语言编写脚…

44、tomcat安装

一、tomcat tomcat和php一样,都是用来处理动态页面的。 tomcat也可以作为web应用服务器,开源的。 php .php tomcat .jsp nginx .html tomcat 是用Java代码写的程序,运行的是Java的web应用程序。 tomcat的特点和功能: 1、s…