昇思25天学习打卡营第20天|LSTM+CRF序列标注

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com)

LSTM+CRF序列标注

概述

序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。以命名实体识别为例:

输入序列
输出标注BIIIOOOOOBI

如上表所示,清华大学 和 北京是地名,需要将其识别,我们对每个输入的单词预测其标签,最后根据标签来识别实体。

这里使用了一种常见的命名实体识别的标注方法——“BIOE”标注,将一个实体(Entity)的开头标注为B,其他部分标注为I,非实体标注为O。

条件随机场(Conditional Random Field, CRF)

从上文的举例可以看到,对序列进行标注,实际上是对序列中每个Token进行标签预测,可以直接视作简单的多分类问题。但是序列标注不仅仅需要对单个Token进行分类预测,同时相邻Token直接有关联关系。以清华大学一词为例:

输入序列
输出标注BIII
输出标注OIII×

如上表所示,正确的实体中包含的4个Token有依赖关系,I前必须是B或I,而错误输出结果将字标注为O,违背了这一依赖。将命名实体识别视为多分类问题,则每个词的预测概率都是独立的,易产生类似的问题,因此需要引入一种能够学习到此种关联关系的算法来保证预测结果的正确性。而条件随机场是适合此类场景的一种概率图模型。下面对条件随机场的定义和参数化形式进行简析。

考虑到序列标注问题的线性序列特点,本节所述的条件随机场特指线性链条件随机场(Linear Chain CRF)

设𝑥={𝑥0,...,𝑥𝑛}为输入序列,𝑦={𝑦0,...,𝑦𝑛},𝑦∈𝑌为输出的标注序列,其中𝑛为序列的最大长度,𝑌表示𝑥对应的所有可能的输出序列集合。y'也是一个输出标签序列,是所有可能的输出标签序列中的一个成员。则输出序列𝑦的概率为:

                                         P(y\mid x) = \frac{\exp(Score(x, y))}{ \sum_{y' \in {Y}} \exp(Score(x, y')}        (1)

设𝑥𝑖, 𝑦𝑖为序列的第𝑖个Token和对应的标签,则Score需要能够在计算𝑥𝑖和𝑦𝑖的映射的同时,捕获相邻标签𝑦𝑖−1和𝑦𝑖之间的关系,因此我们定义两个概率函数:

  1. 发射概率函数𝜓EMIT:表示𝑥𝑖→𝑦𝑖的概率。
  2. 转移概率函数𝜓TRANS:表示𝑦𝑖−1→𝑦𝑖的概率。

则可以得到Score的计算公式:

设标签集合为𝑇,构造大小为|𝑇|𝑥|𝑇|的矩阵𝐏,用于存储标签间的转移概率;由编码层(可以为Dense、LSTM等)输出的隐状态ℎ可以直接视作发射概率,此时Score的计算公式可以转化为:

完整的CRF完整推导可参考Log-Linear Models, MEMMs, and CRFs

接下来我们根据上述公式,使用MindSpore来实现CRF的参数化形式。首先实现CRF层的前向训练部分,将CRF和损失函数做合并,选择分类问题常用的负对数似然函数(Negative Log Likelihood, NLL),则有:

由公式(1)可得,

根据公式(5),我们称被减数为Normalizer,减数为Score,分别实现后相减得到最终Loss。

Score计算

首先根据公式(3)计算正确标签序列所对应的得分,这里需要注意,除了转移概率矩阵𝐏外,还需要维护两个大小为|𝑇|的向量,分别作为序列开始和结束时的转移概率。同时我们引入了一个掩码矩阵𝑚𝑎𝑠𝑘,将多个序列打包为一个Batch时填充的值忽略,使得Score计算仅包含有效的Token。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore
Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 
def compute_score(emissions, tags, seq_ends, mask, trans, start_trans, end_trans):# emissions: (seq_length, batch_size, num_tags)# tags: (seq_length, batch_size)# mask: (seq_length, batch_size)seq_length, batch_size = tags.shapemask = mask.astype(emissions.dtype)# 将score设置为初始转移概率# shape: (batch_size,)score = start_trans[tags[0]]# score += 第一次发射概率# shape: (batch_size,)score += emissions[0, mnp.arange(batch_size), tags[0]]for i in range(1, seq_length):# 标签由i-1转移至i的转移概率(当mask == 1时有效)# shape: (batch_size,)score += trans[tags[i - 1], tags[i]] * mask[i]# 预测tags[i]的发射概率(当mask == 1时有效)# shape: (batch_size,)score += emissions[i, mnp.arange(batch_size), tags[i]] * mask[i]# 结束转移# shape: (batch_size,)last_tags = tags[seq_ends, mnp.arange(batch_size)]# score += 结束转移概率# shape: (batch_size,)score += end_trans[last_tags]return score

Normalizer计算

根据公式(5),Normalizer是𝑥对应的所有可能的输出序列的Score的对数指数和(Log-Sum-Exp)。此时如果按穷举法进行计算,则需要将每个可能的输出序列Score都计算一遍,共有个结果。这里我们采用动态规划算法,通过复用计算结果来提高效率。

假设需要计算从第0至第𝑖个Token所有可能的输出序列得分Score𝑖,则可以先计算出从第0至第𝑖−1个Token所有可能的输出序列得分Score𝑖−1。因此,Normalizer可以改写为以下形式:

其中ℎ𝑖为第𝑖个Token的发射概率,𝐏是转移矩阵。由于发射概率矩阵ℎ和转移概率矩阵𝐏独立于𝑦的序列路径计算,可以将其提出,可得:

根据公式(7),Normalizer的实现如下:

def compute_normalizer(emissions, mask, trans, start_trans, end_trans):# emissions: (seq_length, batch_size, num_tags)# mask: (seq_length, batch_size)seq_length = emissions.shape[0]# 将score设置为初始转移概率,并加上第一次发射概率# shape: (batch_size, num_tags)score = start_trans + emissions[0]for i in range(1, seq_length):# 扩展score的维度用于总score的计算# shape: (batch_size, num_tags, 1)broadcast_score = score.expand_dims(2)# 扩展emission的维度用于总score的计算# shape: (batch_size, 1, num_tags)broadcast_emissions = emissions[i].expand_dims(1)# 根据公式(7),计算score_i# 此时broadcast_score是由第0个到当前Token所有可能路径# 对应score的log_sum_exp# shape: (batch_size, num_tags, num_tags)next_score = broadcast_score + trans + broadcast_emissions# 对score_i做log_sum_exp运算,用于下一个Token的score计算# shape: (batch_size, num_tags)next_score = ops.logsumexp(next_score, axis=1)# 当mask == 1时,score才会变化# shape: (batch_size, num_tags)score = mnp.where(mask[i].expand_dims(1), next_score, score)# 最后加结束转移概率# shape: (batch_size, num_tags)score += end_trans# 对所有可能的路径得分求log_sum_exp# shape: (batch_size,)return ops.logsumexp(score, axis=1)

Viterbi算法

在完成前向训练部分后,需要实现解码部分。这里我们选择适合求解序列最优路径的Viterbi算法。与计算Normalizer类似,使用动态规划求解所有可能的预测序列得分。不同的是在解码时同时需要将第𝑖个Token对应的score取值最大的标签保存,供后续使用Viterbi算法求解最优预测序列使用。

取得最大概率得分Score,以及每个Token对应的标签历史History后,根据Viterbi算法可以得到公式:

从第0个至第𝑖个Token对应概率最大的序列,只需要考虑从第0个至第𝑖−1个Token对应概率最大的序列,以及从第𝑖个至第𝑖−1个概率最大的标签即可。因此我们逆序求解每一个概率最大的标签,构成最佳的预测序列。

由于静态图语法限制,我们将Viterbi算法求解最佳预测序列的部分作为后处理函数,不纳入后续CRF层的实现。

def viterbi_decode(emissions, mask, trans, start_trans, end_trans):# emissions: (seq_length, batch_size, num_tags)# mask: (seq_length, batch_size)seq_length = mask.shape[0]score = start_trans + emissions[0]history = ()for i in range(1, seq_length):broadcast_score = score.expand_dims(2)broadcast_emission = emissions[i].expand_dims(1)next_score = broadcast_score + trans + broadcast_emission# 求当前Token对应score取值最大的标签,并保存indices = next_score.argmax(axis=1)history += (indices,)next_score = next_score.max(axis=1)score = mnp.where(mask[i].expand_dims(1), next_score, score)score += end_transreturn score, historydef post_decode(score, history, seq_length):# 使用Score和History计算最佳预测序列batch_size = seq_length.shape[0]seq_ends = seq_length - 1# shape: (batch_size,)best_tags_list = []# 依次对一个Batch中每个样例进行解码for idx in range(batch_size):# 查找使最后一个Token对应的预测概率最大的标签,# 并将其添加至最佳预测序列存储的列表中best_last_tag = score[idx].argmax(axis=0)best_tags = [int(best_last_tag.asnumpy())]# 重复查找每个Token对应的预测概率最大的标签,加入列表for hist in reversed(history[:seq_ends[idx]]):best_last_tag = hist[idx][best_tags[-1]]best_tags.append(int(best_last_tag.asnumpy()))# 将逆序求解的序列标签重置为正序best_tags.reverse()best_tags_list.append(best_tags)return best_tags_list

CRF层

完成上述前向训练和解码部分的代码后,将其组装完整的CRF层。考虑到输入序列可能存在Padding的情况,CRF的输入需要考虑输入序列的真实长度,因此除发射矩阵和标签外,加入seq_length参数传入序列Padding前的长度,并实现生成mask矩阵的sequence_mask方法。

综合上述代码,使用nn.Cell进行封装,最后实现完整的CRF层如下:

import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
import mindspore.numpy as mnp
from mindspore.common.initializer import initializer, Uniformdef sequence_mask(seq_length, max_length, batch_first=False):"""根据序列实际长度和最大长度生成mask矩阵"""range_vector = mnp.arange(0, max_length, 1, seq_length.dtype)result = range_vector < seq_length.view(seq_length.shape + (1,))if batch_first:return result.astype(ms.int64)return result.astype(ms.int64).swapaxes(0, 1)class CRF(nn.Cell):def __init__(self, num_tags: int, batch_first: bool = False, reduction: str = 'sum') -> None:if num_tags <= 0:raise ValueError(f'invalid number of tags: {num_tags}')super().__init__()if reduction not in ('none', 'sum', 'mean', 'token_mean'):raise ValueError(f'invalid reduction: {reduction}')self.num_tags = num_tagsself.batch_first = batch_firstself.reduction = reductionself.start_transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags,)), name='start_transitions')self.end_transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags,)), name='end_transitions')self.transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags, num_tags)), name='transitions')def construct(self, emissions, tags=None, seq_length=None):if tags is None:return self._decode(emissions, seq_length)return self._forward(emissions, tags, seq_length)def _forward(self, emissions, tags=None, seq_length=None):if self.batch_first:batch_size, max_length = tags.shapeemissions = emissions.swapaxes(0, 1)tags = tags.swapaxes(0, 1)else:max_length, batch_size = tags.shapeif seq_length is None:seq_length = mnp.full((batch_size,), max_length, ms.int64)mask = sequence_mask(seq_length, max_length)# shape: (batch_size,)numerator = compute_score(emissions, tags, seq_length-1, mask, self.transitions, self.start_transitions, self.end_transitions)# shape: (batch_size,)denominator = compute_normalizer(emissions, mask, self.transitions, self.start_transitions, self.end_transitions)# shape: (batch_size,)llh = denominator - numeratorif self.reduction == 'none':return llhif self.reduction == 'sum':return llh.sum()if self.reduction == 'mean':return llh.mean()return llh.sum() / mask.astype(emissions.dtype).sum()def _decode(self, emissions, seq_length=None):if self.batch_first:batch_size, max_length = emissions.shape[:2]emissions = emissions.swapaxes(0, 1)else:batch_size, max_length = emissions.shape[:2]if seq_length is None:seq_length = mnp.full((batch_size,), max_length, ms.int64)mask = sequence_mask(seq_length, max_length)return viterbi_decode(emissions, mask, self.transitions, self.start_transitions, self.end_transitions)

BiLSTM+CRF模型

在实现CRF后,我们设计一个双向LSTM+CRF的模型来进行命名实体识别任务的训练。模型结构如下:

nn.Embedding -> nn.LSTM -> nn.Dense -> CRF

其中LSTM提取序列特征,经过Dense层变换获得发射概率矩阵,最后送入CRF层。具体实现如下:

class BiLSTM_CRF(nn.Cell):def __init__(self, vocab_size, embedding_dim, hidden_dim, num_tags, padding_idx=0):super().__init__()self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=padding_idx)self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, bidirectional=True, batch_first=True)self.hidden2tag = nn.Dense(hidden_dim, num_tags, 'he_uniform')self.crf = CRF(num_tags, batch_first=True)def construct(self, inputs, seq_length, tags=None):embeds = self.embedding(inputs)outputs, _ = self.lstm(embeds, seq_length=seq_length)feats = self.hidden2tag(outputs)crf_outs = self.crf(feats, tags, seq_length)return crf_outs

完成模型设计后,我们生成两句例子和对应的标签,并构造词表和标签表。

embedding_dim = 16
hidden_dim = 32training_data = [("清 华 大 学 坐 落 于 首 都 北 京".split(),"B I I I O O O O O B I".split()
), ("重 庆 是 一 个 魔 幻 城 市".split(),"B I O O O O O O O".split()
)]word_to_idx = {}
word_to_idx['<pad>'] = 0
for sentence, tags in training_data:for word in sentence:if word not in word_to_idx:word_to_idx[word] = len(word_to_idx)tag_to_idx = {"B": 0, "I": 1, "O": 2}
len(word_to_idx)
21

接下来实例化模型,选择优化器并将模型和优化器送入Wrapper。

由于CRF层已经进行了NLLLoss的计算,因此不需要再设置Loss。

model = BiLSTM_CRF(len(word_to_idx), embedding_dim, hidden_dim, len(tag_to_idx))
optimizer = nn.SGD(model.trainable_params(), learning_rate=0.01, weight_decay=1e-4)
grad_fn = ms.value_and_grad(model, None, optimizer.parameters)def train_step(data, seq_length, label):loss, grads = grad_fn(data, seq_length, label)optimizer(grads)return loss

将生成的数据打包成Batch,按照序列最大长度,对长度不足的序列进行填充,分别返回输入序列、输出标签和序列长度构成的Tensor。

def prepare_sequence(seqs, word_to_idx, tag_to_idx):seq_outputs, label_outputs, seq_length = [], [], []max_len = max([len(i[0]) for i in seqs])for seq, tag in seqs:seq_length.append(len(seq))idxs = [word_to_idx[w] for w in seq]labels = [tag_to_idx[t] for t in tag]idxs.extend([word_to_idx['<pad>'] for i in range(max_len - len(seq))])labels.extend([tag_to_idx['O'] for i in range(max_len - len(seq))])seq_outputs.append(idxs)label_outputs.append(labels)return ms.Tensor(seq_outputs, ms.int64), \ms.Tensor(label_outputs, ms.int64), \ms.Tensor(seq_length, ms.int64)
data, label, seq_length = prepare_sequence(training_data, word_to_idx, tag_to_idx)
data.shape, label.shape, seq_length.shape
((2, 11), (2, 11), (2,))

对模型进行预编译后,训练500个step。

训练流程可视化依赖tqdm库,可使用pip install tqdm命令安装。

from tqdm import tqdmsteps = 500
with tqdm(total=steps) as t:for i in range(steps):loss = train_step(data, seq_length, label)t.set_postfix(loss=loss)t.update(1)
100%|██████████| 500/500 [02:03<00:00,  4.05it/s, loss=0.42874527]

最后我们来观察训练500个step后的模型效果,首先使用模型预测可能的路径得分以及候选序列。

score, history = model(data, seq_length)
score
Tensor(shape=[2, 3], dtype=Float32, value=
[[ 3.05188789e+01,  3.49461746e+01,  2.99246387e+01],[ 2.84129295e+01,  2.68042870e+01,  3.39340820e+01]])

使用后处理函数进行预测得分的后处理。

predict = post_decode(score, history, seq_length)
predict
[[0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 1], [0, 1, 2, 2, 2, 2, 2, 2, 2]]

最后将预测的index序列转换为标签序列,打印输出结果,查看效果。

idx_to_tag = {idx: tag for tag, idx in tag_to_idx.items()}def sequence_to_tag(sequences, idx_to_tag):outputs = []for seq in sequences:outputs.append([idx_to_tag[i] for i in seq])return outputs
sequence_to_tag(predict, idx_to_tag)
[['B', 'I', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'B', 'I'],['B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O']]

用双向长短期记忆网络(BiLSTM)与CRF层结合实现序列标注。

发射概率计算:使用神经网络(如LSTM、GRU等)来计算输入序列每个Token的潜在状态(即发射概率)。

转移概率矩阵:定义一个转移概率矩阵,表示标签之间的转移概率。

前向算法:实现前向算法来计算给定标签序列的Score和Normalizer。

损失函数:使用负对数似然函数(Negative Log Likelihood, NLL)作为损失函数,结合前向算法的结果来训练模型。

Viterbi解码:在模型推理阶段,使用Viterbi算法来找到最可能的标签序列。

最后成功序列标注了training_data中的数据:

training_data = [(
    "清 华 大 学 坐 落 于 首 都 北 京".split(),
    "B I I I O O O O O B I".split()
), (
    "重 庆 是 一 个 魔 幻 城 市".split(),
    "B I O O O O O O O".split()
)]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/42738.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

明日周刊-第15期

赶在周末结束前输出一把&#xff0c;周日的晚上大家要睡个好觉哦。 文章目录 一周热点资源分享言论歌曲推荐 一周热点 科技创新与基础设施建设 深中通道正式通车试运营 时间&#xff1a;6月30日 内容&#xff1a;国家重大工程深中通道正式通车试运营&#xff0c;标志着珠江口东…

吉时利KEITHLEY KI-488驱动和说明

吉时利KEITHLEY KI-488驱动和说明

[吃瓜教程]南瓜书第6章支持向量机

0.补充知识 0.1 超平面 定义&#xff1a; 超平面是指在&#x1d45b;维空间中&#xff0c;维度为 &#x1d45b;−1的子空间。它是分割空间的一个平面。 性质&#xff1a; n维空间的超平面 ( w T x b 0 , 其中 w , x ∈ R n ) (w^Tx_b0,其中w,x\in \mathbb R^n) (wTxb​0,其…

通过端口转发实现docker容器运行时端口更改

通过端口转发实现docker容器运行时端口更改 前言启动容器查看容器ip地址端口转发 前言 关于修改docker正在运行中容器端口&#xff0c;网上大部分分为3类: 1. 删除原有容器重新创建;2. 改配置文件;3. 在现有容器上新提交镜像&#xff0c;用新镜像起新的容器。 1和3属于同一种流…

探讨4层代理和7层代理行为以及如何获取真实客户端IP

准备工作 实验环境 IP角色192.168.1.100客户端请求IP192.168.1.100python 启动的HTTP服务192.168.1.102nginx服务192.168.1.103haproxy 服务 HTTP服务 这是一个简单的HTTP服务&#xff0c;主要打印HTTP报文用于分析客户端IP #!/usr/bin/env python # coding: utf-8import …

「技术分享」FDL对接金蝶云API取数

很多企业的ERP系统都在用金蝶云星空&#xff0c;金蝶云星空API是IT人员获取数据的重要来源&#xff0c; 常常用来生成定制化报表&#xff0c;进行数据分析&#xff0c;或是将金蝶云的数据与OA系统、BI工具集成。 通常情况下&#xff0c;IT人员需要使用Python、Java等语言编写脚…

44、tomcat安装

一、tomcat tomcat和php一样&#xff0c;都是用来处理动态页面的。 tomcat也可以作为web应用服务器&#xff0c;开源的。 php .php tomcat .jsp nginx .html tomcat 是用Java代码写的程序&#xff0c;运行的是Java的web应用程序。 tomcat的特点和功能&#xff1a; 1、s…

XSS平台的搭建

第一步&#xff1a;安装MySQL 数据库 因为xss平台涉及到使用mysql 数据库&#xff0c;在安装之前&#xff0c;先使用docker 安装mysql 数据库。 docker run --name mysqlserver -e MYSQL_ROOT_PASSWORD123 -d -i -p 3309:3306 mysql:5.6 第二步&#xff1a;安装xssplatform…

hadoop分布式中某个 节点报错的解决案例

前言 在分布式节点中&#xff0c;发现有个节点显示不可用状态&#xff0c;因此需要紧急修复。 hadoop版本 目前这套集群hadoop的版本如下&#xff1a; 集群报错详细日志&#xff1a; 1/1 local-dirs are bad: /kkb/install/hadoop-2.6.0-cdh5.14.2/hadoopDatas/tempDatas/n…

离线开发(VSCode、Chrome、Element)

一、VSCode 扩展 使用能联网的电脑 A&#xff0c;在VSCode官网下载安装包 使用能联网的电脑 A&#xff0c;从扩展下载vsix扩展文件 将VSCode安装包和vsix扩展文件通过手段&#xff08;u盘&#xff0c;刻盘 等&#xff09;导入到不能联网的离线电脑 B 中 在离线电脑 B 中安装…

快速解决找不到krpt.dll,无法继续执行代码问题

对于那些遇到计算机开机出现由于无法找到krpt.dll&#xff0c;进而无法继续执行代码问题的用户。 krpt.dll是计算机系统中与DirectX紧密相关的重要文件&#xff0c;如果它出现问题&#xff0c;可能会对一些特定的软件或游戏的运行产生影响。实际上&#xff0c;我们有多种解决该…

无需服务器,浏览器跑700+AI模型?!【送源码】

Transformers.js 是一个创新的网络机器学习库&#xff0c;它将先进的 Transformer 模型直接带入浏览器&#xff0c;无需服务器端支持。这个库与 Hugging Face 的 Python transformers 库功能对等&#xff0c;提供相似的 API 接口来运行预训练模型&#xff0c;涵盖了自然语言处理…

mysql signed unsigned zerofill详解

灵感来源 mysql中有符号signed&#xff0c;无符号unsigned与零填充zerofill UNSIGNED 无符号UNSIGNED是一个属性&#xff0c;你可以在创建或修改表时为整数类型的列指定它。无符号属性意味着该列只能存储非负整数&#xff08;0和正整数&#xff09;&#xff0c;而不是默认的有…

docker部署onlyoffice,开启JWT权限校验Token

原来的部署方式 之前的方式是禁用了JWT&#xff1a; docker run -itd -p 8080:80 --name docserver --network host -e JWT_ENABLEDfalse --restartalways onlyoffice/documentserver:8 新的部署方式 参考文档&#xff1a;https://helpcenter.onlyoffice.com/installation/…

C9联盟是什么?

九校联盟&#xff08;C9 League&#xff09;&#xff0c;简称C9联盟&#xff0c;是中国首个顶尖大学间的高校联盟&#xff0c;于2009年10月正式启动。 其成员都是国家首批“985工程”重点建设的一流大学&#xff0c;包括北京大学、清华大学、哈尔滨工业大学、复旦大学、上海交通…

c++ primer plus 第15章友,异常和其他:15.2.2模板中的嵌套

c primer plus 第15章友&#xff0c;异常和其他&#xff1a;15.2.2模板中的嵌套 15.2.2模板中的嵌套 文章目录 c primer plus 第15章友&#xff0c;异常和其他&#xff1a;15.2.2模板中的嵌套15.2.2模板中的嵌套程序清单15.5 queuetp.h程序清单15.6 nested.cpp 15.2.2模板中的…

五.RocketMQ理论及常见问题处理方案

RocketMQ的架构理论及底层原理 一&#xff1a;生产消息1.消息生产过程2.Queue选择算法 二&#xff1a;存储消息2.1存储介质2.2消息的存储和发送2.3消息存储结构2.4刷盘机制 三&#xff1a;消费消息1 获取消费类型2 消费模式3 Rebalance机制4.Queue分配算法 四&#xff1a;消息清…

html+css+JavaScript 实现两个输入框的反转动画

开发时遇到了一个输入框交换的动画 做完之后觉得页面上加些许过渡或动画&#xff0c;其变化虽小&#xff0c;却能极大的提升页面质感&#xff0c;给人一种顺畅、丝滑的视觉体验。它的实现过程主要是通过css中的transition和animation来实现的。平时在开发的时候增加一些动画效…

使用qt creator配置msvc环境(不需要安装shit一样的宇宙第一IDE vs的哈)

1. 背景 习惯使用Qt编程的童鞋&#xff0c;尤其是linux下开发Qt的童鞋一般都是使用qt creator作为首选IDE的&#xff0c;通常在windows上使用Qt用qt creator作为IDE的话一般编译器有mingw和msvc两种&#xff0c;使用mingw版本和在linux下的方式基本上一样十分简单&#xff0c;不…

如何在Ubuntu环境下使用加速器配置Docker环境

一、安装并打开加速器 这个要根据每个加速器的情况来安装并打开&#xff0c;一般是会开放一个代理端口&#xff0c;比如1087 二、安装Docker https://docs.docker.com/engine/install/debian/#install-using-the-convenience-script 三、配置Docker使用加速器 3.1 修改配置…