DataWhaleAI分子预测夏令营 学习笔记

AI分子预测夏令营学习笔记

一、直播概览

主持人介绍

  • 姓名:徐翼萌
  • 角色:DataWhale助教
  • 活动目的:分享机器学习赛事经验,提升参赛者在分子预测领域的能力

嘉宾介绍

  • 姓名:余老师
  • 背景:Data成员,腾讯广告算法大赛冠军,著有《机器学习算法竞赛实战》

二、技术分享要点

数据预处理

  • 数据清洗:包括处理缺失值、异常值和重复数据。缺失值可以通过均值、中位数填充,或使用预测模型预测缺失值。异常值可以通过箱型图等方法识别并处理。
  • 数据标准化:对数据进行标准化或归一化处理,以消除不同量纲的影响。
  • 探索性数据分析(EDA):使用统计图表来分析数据分布、中心趋势和分散程度。

特征工程

  • 特征提取:从原始数据中提取有助于模型理解的特征,例如从化学结构中提取分子描述符。
  • 特征选择:使用过滤法、包装法或嵌入法选择最有信息量的特征。
  • 特征转换
    • 连续特征:可能需要进行对数转换或Box-Cox转换来稳定方差。
    • 类别特征:使用独热编码转换为虚拟变量,注意处理“一位有效”问题。

模型选择与训练

  • 模型比较:评估不同模型的性能,包括但不限于决策树、随机森林、梯度提升机、支持向量机等。
  • 超参数调优:使用交叉验证和自动化调参技术(如Hyperopt或Optuna)来找到最优的超参数组合。
  • 模型正则化:使用L1或L2正则化防止模型过拟合。

预测与评估

  • 性能指标
    • 准确率、召回率和F1分数:评估模型在不同类别上的表现。
    • ROC曲线和AUC:评估模型在不同阈值下的性能。
  • 混淆矩阵:直观展示模型预测与实际标签之间的关系。
  • 误差分析:分析模型预测错误的案例,找出潜在原因。

模型融合

  • Bagging:通过自助采样和模型平均来减少方差。
  • Boosting:通过关注被之前模型错误分类的样本来减少偏差。
  • Stacking:结合多个模型的预测结果进行最终预测。

附加学习内容

  • TF-IDF深入:理解TF-IDF的计算原理,如何影响文本特征的处理。
  • 高级文本处理:学习词嵌入(Word Embedding)和主题建模(如LDA)等高级文本分析技术。
  • CatBoost特性:探索CatBoost如何处理缺失值和类别特征,以及其在处理大数据集时的优势。

交叉验证方法

  • K-Fold:将数据集平均分成K份,轮流使用其中一份作为验证集。
  • Stratified K-Fold:在K-Fold的基础上,保持每个折叠中各类别的比例相同。
  • Time Series Cross-Validation:特别适用于时间序列数据,保持数据的时间顺序。

处理类别不平衡

  • 重采样:通过过采样少数类或欠采样多数类来平衡类别。
  • 合成样本生成:使用SMOTE等技术生成新的合成样本。
  • 阈值调整:根据类别分布调整分类阈值。

实用技巧

  • 特征重要性评估:使用特征重要性图来识别关键特征。
  • 模型解释性:使用SHAP、LIME等工具来解释模型预测。
  • 代码优化:编写清晰、高效的代码,使用向量化操作代替循环。

实践建议

  • 代码版本控制:使用Git等工具管理代码版本。
  • 实验跟踪:使用MLflow或TensorBoard记录实验过程和结果。
  • 结果可视化:使用Matplotlib、Seaborn等库创建直观的图表来展示结果

三、QA环节要点

  • 讨论生成数据的局限性和对现有数据的有效利用。
  • 指导如何查询比赛成绩和排名,根据反馈优化模型。

四、结束语与感悟

  • 主持人徐翼萌对余老师的分享表示感谢,强调了学习活动的价值。
  • 个人感悟:通过学习,对机器学习在分子预测领域的应用有了更深入的理解。

五、后续行动计划

  • 独立完成代码实践,加深对理论知识的理解。
  • 参与DataWhale的后续活动,获得更多实践经验。
  • 持续跟踪最新的机器学习技术和研究进展。

六、备注

  • 记录直播中遇到的理解难点,计划通过查阅资料或参与讨论来解决。
  • 收集直播中提及的资源链接,如相关论文、工具库和学习材料。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/42077.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣1878.矩阵中最大的三个菱形和

力扣1878.矩阵中最大的三个菱形和 斜前缀和 遍历矩阵元素&#xff0c;同时求当前点左下右下两位置的前缀和枚举每个菱形中心&#xff0c;遍历边长 int sum1[101][101];int sum2[101][101];class Solution {public:vector<int> getBiggestThree(vector<vector<in…

[SAP ABAP] MM模块常用的Table

MM模块围绕的核心是对物料进行一系列的操作 MM模块包含两大功能:采购管理和库存管理 MM模块的数据分为三大类: ① 组织结构数据 ② 主数据 ③ 业务流程数据 支撑企业经营活动的数据&#xff0c;我们可以把该数据称为主数据(主数据是进行一切业务行为的基础) 企业经营活动产生…

大数据中的常见数据问题:独断脏

想象你刚刚入职一家声称正在进行"数字化转型"的大型企业,担任大数据开发工程师。在入职的第一周,你满怀热情,迫不及待地想要大展拳脚,用你的技能来推动公司的数据驱动决策。 目录 大数据中的常见数据问题1. 独 - 数据孤岛2. 断 - 数据价值链断层3. 缺 - 标准、治理…

如何搜索查找ICLR论文

记录有几个查找顶级会议文章的网址&#xff0c;不止ICLR ICLR 2024 还会有visualization模式&#xff1a; ICLR 2024 virtual 这个网站也很棒 Paper Copilot ICLR 2024 当然还有一个用图表示各论文相关关系的网站&#xff1a; connected papers

WACV2023论文速览Attention注意力机制相关

Paper1 ScoreNet: Learning Non-Uniform Attention and Augmentation for Transformer-Based Histopathological Image Classification 摘要原文: Progress in digital pathology is hindered by high-resolution images and the prohibitive cost of exhaustive localized an…

2、图形验证码

1、图形验证码设计 1.1思路 现今&#xff0c;市面上的图形验证码付费的&#xff0c;免费的多种多样&#xff0c;主要形式有滑动拼图、文字点选、语序点选、字体识别、空间推理、智能随机等。 而处理也分为web端和sever端两部分 此处以免费的kaptcha 为例&#xff0c;进行数字图…

电机控制杂谈——增量式的预测电流控制的优势在哪?

1.前言 前几天看到这么个问题。“模型预测控制如何消除静态误差” 评论说用增量式的预测控制。 这个回答让我想起来我大四下看的这篇论文。现在都一百多被引用了。 但是苦于当时能力有限&#xff0c;没办法复现这个文章。 所以现在想重新验证一下。 2.静态误差和电机磁链有…

36.哀家要长脑子了!--高精度的+-*/

1.791. 高精度加法 - AcWing题库 思路&#xff1a;把大数的每一位数当作数组的元素存入到数组中。倒序存储也是说&#xff0c;个位放在下标为0 的位置&#xff0c;然后每一位两两操作&#xff0c;做好进位的工作。 // C A B vector<int> add(vector<int>…

Spring Boot手写starter

目录 1.介绍1.1 什么是 Starter 机制&#xff1f;1.2 Starter 机制的工作原理&#xff1f; 2.starter自定义2.1 新建工程2.2 自定义注解2.3 创建增强类2.4 创建自动配置类2.5 配置自动配置2.6 测试 1.介绍 1.1 什么是 Starter 机制&#xff1f; Starter 机制是 Spring Boot 提…

BulingBuling - 作息安排 [Reset Your Routine] - 1

The Blinkist Team: [ Reset Your Routine ] 如果你发现自己很难按部就班&#xff0c;或者陷入工作效率低的困境&#xff0c;那么你可能需要重新调整一下作息时间&#xff01;从睡眠和营养&#xff0c;到待办事项和井井有条--本指南为你提供了各种技巧和策略&#xff0c;让你的…

自然之美无需雕琢

《自然之美&#xff0c;无需雕琢 ”》在这个颜值至上的时代&#xff0c;但在温馨氛围中&#xff0c;单依纯以一种意想不到的方式&#xff0c;为我们诠释了自然之美的真谛。而医生的回答&#xff0c;如同一股清流耳目一新。“我说医生你看我这张脸&#xff0c;有没有哪里要动的。…

【数据结构(邓俊辉)学习笔记】高级搜索树01——伸展树

文章目录 1. 逐层伸展1. 1 宽松平衡1. 2 局部性1. 3 自适应调整1. 4 逐层伸展1. 5 实例1. 6 一步一步往上爬1. 7 最坏情况 2. 双层伸展2.1 双层伸展2.2 子孙异侧2.3 子孙同侧2.4 点睛之笔2.5 折叠效果2.6 分摊性能2.7 最后一步 3 算法实现3.1 功能接口3.2 伸展算法3.3 四种情况…

linux下的网络编程

网络编程 1. 网络基础编程知识1.1网络字节序问题1.2 常用socket编程接口1.2.1 sockaddr1.2.2 ip地址转换函数1.2.4 socket()1.2.3 bind()1.2.4 listen()1.2.5 accept()1.2.6 connect() 1.3 以udp为基础的客户端连接服务器的demo1.4 以udp为基础的的服务器聊天室功能demo1.5 基于…

Spark SQL----内置函数Conversion Functions Conditional Functions

Spark SQL----内置函数Conversion Functions& Conditional Functions Conversion Functions 例子&#xff1a; -- cast SELECT cast(10 as int); --------------- |CAST(10 AS INT)| --------------- | 10| ---------------Conditional Functions 例子&#x…

Apispec,一个用于生成 OpenAPI(Swagger)规范的 Python 库

目录 01什么是 Apispec&#xff1f; 为什么选择 Apispec&#xff1f; 安装与配置 02Apispec 的基本用法 生成简单的 API 文档 1、创建 Apispec 实例 2、定义 API 路由和视图 3、添加路径到 Apispec 集成 Flask 和 Apispec 1、安装…

Spring Boot与Jenkins的集成

Spring Boot与Jenkins的集成 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 一、引言 Jenkins作为一个开源的持续集成&#xff08;CI&#xff09;和持续交付…

计算机行业现状分析与发展前景

一、行业竞争现状 技术创新不断涌现&#xff1a;计算机行业在技术创新方面取得了长足的进步&#xff0c;如云计算、大数据、人工智能、物联网等前沿技术不断涌现&#xff0c;这些技术不仅推动了行业的快速发展&#xff0c;也为传统产业的转型升级提供了有力支撑。 行业竞争日益…

Linux开发:进程间通过Unix Domain Socket传递数据

进程间传递数据的方式有很多种,Linux还提供一种特殊的Socket用于在多进程间传递数据,就是Unix Domain Socket(UDS)。 虽然通过普通的Socket也能做到在多进程间传递数据,不过这样需要通过协议栈层的打包与拆包,未免有些浪费效率,通过UDS,数据仅仅通过一个特殊的sock文件…

熔断降级处理

什么是熔断降级 微服务雪崩效应 当微服务运行不正常&#xff0c;会导致无法正常调用微服务&#xff0c;此时会出现异常&#xff0c;如果这种异常不去处理&#xff0c;可能会导致雪崩效应 微服务的雪崩效应表现在服务与服务之间调用&#xff0c;当其中一个服务无法提供服务时…

FreeU: Free Lunch in Diffusion U-Net——【代码复现】

这篇文章发表于CVPR 2024&#xff0c;官网地址&#xff1a;ChenyangSi/FreeU: FreeU: Free Lunch in Diffusion U-Net (CVPR2024 Oral) (github.com) 一、环境准备 提前准备好python、pytorch环境 二、下载项目依赖 demo下有一个requirements.txt文件&#xff0c; pip inst…