【动态规划】动态规划一

动态规划一

  • 1.第 N 个泰波那契数
  • 2.面试题 08.01. 三步问题
  • 3.使用最小花费爬楼梯
  • 4.解码方法

在这里插入图片描述

点赞👍👍收藏🌟🌟关注💖💖
你的支持是对我最大的鼓励,我们一起努力吧!😃😃

1.第 N 个泰波那契数

题目链接:1137. 第 N 个泰波那契数

题目分析:

在这里插入图片描述

返回第n个泰波那契数 Tn 的值。
n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2,这个公式可以转化一下看的更明白:
Tn = Tn-3 + Tn-2 + Tn-1, Tn等于前面三个数之和。T0,T1,T2已经给我们了。

在这里插入图片描述
接下来用动态规划的思想来解决这个问题。

算法原理:

动态规划思想有5步:

  1. 先确实状态表示
  2. 根据状态表示推导状态转移方程
  3. 初始化
  4. 填表顺序
  5. 返回值

动态规划做题流程一般是 先定义一个dp表,这个表可能是一维数组也可能是二维数组。然后想办法把这个dp表填满,里面某个位置的值就是我们的最终结果!

下面具体解释5步:

1.状态表示

是什么 ?dp表中某个位置的值代表什么含义

怎么来的?

  1. 题目要求
  2. 经验+题目要求
  3. 分析问题的过程中,发现重复子问题

比如这道题就可以根据题目要求来得到状态表示。你要返回第n个泰波那契数,那我让dp[0]表示第个泰波那契数,dp[1]表示第个泰波那契数,那最后返回dp[n]就行了。
dp[i]表示:第 i 个 泰波那契数

在这里插入图片描述

2.状态转移方程

dp[i] 等于什么这个推导公式就是状态转移方程。
我们要想办法让之前的状态或者之后的状态来表示dp[i]。

这个题就已经告诉我们状态转移方程了,Tn就等于前三个泰波那契数和。dp[i]依赖前三个,并且是它们的和。dp[i] = dp[i-1] + dp[i-2] + dp[i-3]。

dp[i] 等于什么这个推导公式只能就题论题了!

在这里插入图片描述

3.初始化

保证填表的时候不越界

我们做动态规划就是为了把dp表填满,填表的时候不越界的意思是,我们要先知道怎么填表,就是根据状态转移方程填表

就比如这道题我想填dp[4],我仅需要知道前三个位置的值就可以填dp[4]了。

那为什么要保证不越界呢?
比如这个0、1、2这个位置,如果用状态转移方程来填这些位置的时候,比如0带进去出现-1、-2、-3,这个数组不能访问这些位置越界了!

因此用状态转移方程填表的时候必须要保证不越界的!

比如这道题前三个位置越界,我仅需要把前三个位置初始化。这道题也告诉我们了。

在这里插入图片描述

4. 填表顺序

为了填写当前状态的时候,所需要的状态已经计算过了。

比如初始化完dp[0],dp[1],dp[2],直接去填dp[4],需要知道前三个位置的值,但是现在并不知道dp[3]位置的值是多少。因此填表的时候必须要规定一个顺序。这道题就是从左往右填。

在这里插入图片描述

5.返回值

结合题目要求+状态表示

这道题让返回第n个泰波那契数,我们的状态表示第i个泰波那契数。因此直接返回dp[n]就行了。

在这里插入图片描述

只要完成这五步,动态规划算法原理就结束了。

动态规划编写代码就固定四步:

  1. 创建dp表
  2. 初始化
  3. 填表
  4. 返回值
class Solution {
public:int tribonacci(int n) {// 1.创建dp表// 2.初始化// 3.填表// 4.返回值// 处理一些边界情况if(n == 0) return 0;if(n == 1 || n == 2) return 1;vector<int> dp(n)dp[0] = 0, dp[1] = dp[2] = 1;for(int i = 3; i <= n; ++i){dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];}return dp[n];
};

简单分析一下时间复杂度O(N),空间复杂度O(N)。

接下来学习一下空间优化的技巧。

动态规划的空间优化一般都是用滚动数组方式来优化的。

比如说这道题,我求dp[3] 需要 dp[0]、dp[1]、dp[2]三个位置,dp[4] 需要 dp[1]、dp[2]、dp[3]三个位置 等等。

在这里插入图片描述

有没有发现当我们在求某一个位置的值时仅需要知道前面三个状态的值就可以了。比如dp[4]用不到dp[0],dp[5]用不到dp[0]、dp[1],那求其他位置的时候这些用不到的位置就浪费空间了。

在这里插入图片描述

当我们再填dp表的时候,求dp[i]的时候,前面一些状态就可以丢去,仅需要它前面若干个状态就可以了,像这样一种情况都可以用滚动数组来做优化!

优化后O(N^2)->O(N),O(N)->O(1)。

如何优化?
仅需要几个变量就可以了

比如这道题求某个位置的值需要知道前面三个位置状态的值,因此需要a、b、c、d四个变量就行了。a、b、c记录前三个位置状态值,d记录当前求得位置得状态值。初始的时候a = 0 ,b = 1, c = 1 ,d在dp[3]。比如算完dp[3],然后让a、b、c、d滚动一下,算dp[4] 。像这样的技巧就是滚动数组。

在这里插入图片描述

这里有个细节问题。滚动就是要完成赋值操作。相当于b的值给a,c的值给b,d的值给c。现在有两种赋值操作,从前向后赋值还是从后像前赋值?

第一种方式是对的,因为第二种方式赋值完都是a、b、c都是d!

在这里插入图片描述

class Solution {
public:int tribonacci(int n) {// 1.创建dp表// 2.初始化// 3.填表// 4.返回值// 处理一些边界情况if(n == 0) return 0;if(n == 1 || n == 2) return 1;// vector<int> dp(n)// dp[0] = 0, dp[1] = dp[2] = 1;// for(int i = 3; i <= n; ++i)// {//     dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];// }// return dp[n];//空间优化int a = 0, b = 1, c = 1, d = 0;for(int i = 3; i <= n; ++i){d = a + b + c;a = b; b = c; c = d;}return d;}
};

2.面试题 08.01. 三步问题

题目链接: 面试题 08.01. 三步问题

题目分析:

在这里插入图片描述
楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。

从这就可以看出来到达4需要4前面三个位置位置到达方法相加,同理后面也是这样。
在这里插入图片描述

算法原理:

动态规划:

1.状态表示

根据经验+题目要求
经验就是以某个位置为结尾研究问题,或者是以某个位置为起点研究问题,研究的问题根据题目要求而来。

我们常用的是以某个位置为结尾研究问题

假设位置是i,以i位置为结尾结合这道题要求到达第i个台阶有多少种方法。状态表示就有了。

dp[i]表示:到达i位置时,一共有多少种方法。

2.状态转移方程

也是根据经验来的 :以i位置的状态,最近的一步,来划分问题

比如这道题,到达i位置最近的一步,要么是 i-1 走一步,要么是 i-2 走两步,要么是 i-3 走三步这些所有情况。 以i位置的状态,最近的一步,划分出三种情况。接下来看着三种情况能不能用之前的状态表示一下。

从i-3到达i一共有有多少种方法,从i-3到i是不是先要到达i-3,假设到i-3有x种方法,然后在每一种方法后面加上到i这一步就可以了。x->i,这个x表示达到i-3有多少种方法,x正好是dp[i-3]。同理i-2,i-1都是。
在这里插入图片描述

3.初始化

填表的时候不越界

在这里插入图片描述

4.填表顺序

从左到右

5.返回值

结合题目要求,返回到达第n层有多少种方法,dp[n]。

class Solution {
public:int waysToStep(int n) {// 1.创建dp表// 2.初始化// 3.填表// 4.返回值const int MOD = 1e9+7;//边界问题if(n == 1 || n == 2) return n;if(n == 3) return 4;vector<int> dp(n+1);dp[1] = 1, dp[2] = 2, dp[3] = 4;for(int i = 4; i <= n; ++i)dp[i] = (((dp[i - 1] + dp[i - 2]) % MOD ) + dp[i - 3]) % MOD;return dp[n];}
};

3.使用最小花费爬楼梯

题目链接:746. 使用最小花费爬楼梯

题目分析:

在这里插入图片描述

本题求达到楼梯顶部的最低花费。向上爬楼梯需要支付本层的费用,然后可以爬一层或者两层。可以从下标为 0 或下标为 1 的台阶开始爬楼梯。

注意要求的是爬到楼顶的最低花费,即使到达数组最后一个还需要在往上爬一步加上本层的费用。
在这里插入图片描述

算法原理:

动态规划解法一:

1.状态表示

经验+题目要求

向这种一维数组的dp一般经验分为两种:

  1. 以某个位置为结尾,巴拉巴拉(根据题目要求把它替换掉)
  2. 以某个位置为起点,巴拉巴拉

解法一用的是第一种以某个位置为结尾,巴拉巴拉,接下来看如何替换掉巴拉巴拉。这道题让找达到楼梯顶部的最低花费。那如果以 i 位置结尾,求的是最少花费。那我就可以得到这样一个状态表示,dp[i]表示,到达 i 位置时,最少花费

在这里插入图片描述

2.状态转移方程

分析状态转移方程的一条总线:
用 i 位置之前或者之后的状态,推导 dp[i] 的值
如i之前状态 dp[i-2]、dp[i-1],i之后状态 dp[i+1],dp[i+2]

如何推导出dp[i]的值呢?
根据最近的一步,来划分问题

如这道题,先到达i-1的位置,从i-1位置花费i-1位置的费用走一步到i,或者可以先到达i-2的位置,花费i-2位置的费用走两步到i。这是依据 i 位置最近的一步来划分出的两种情况。因为要求花费最少,所有两种情况种选择最少的。接下来看这两种情况能不能用之前的状态表示一下

cost[i-1]是定值无法改变,先到达i-1位置也是有一个花费,如果想求i位置最小花费,是不是要先找到i-1位置的最小花费,只要找到i-1位置的最小花费在加上cost[i-1]走一步,就是第一种情况的最小花费。到达i-1位置最小花费不就是dp[i-1] 表示到达i-1位置,最小花费。同理i-2也是这样分析的。然后求的是两种情况的最小值。因此状态转移方程就有了。

在这里插入图片描述

3.初始化

在这里插入图片描述

4.填表顺序

由前面两个位置填后面的位置。。。
从左往右

在这里插入图片描述

5.返回值

结合题目要求,返回到达楼梯最小花费。dp表数组下标为n的地方。所以返回 dp[n]

在这里插入图片描述

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {// 1.创建dp表// 2.初始化// 3.填表// 4.返回// 解法一int n = cost.size();vector<int> dp(n+1);//dp[0] = dp[1] = 0;for(int i = 2; i <= n; ++i)dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);return dp[n];   }
};

动态规划解法二:

其实第二种解决就是换了一种状态表示。

1.状态表示

经验+题目要求
以 i 位置为起点,巴拉巴拉

以i位置为起点,然后要去楼顶还要是最小花费,因此 dp[i]表示,从i位置出发,到达楼顶,此时最小花费。

在这里插入图片描述

2.状态转移方程

分析状态转移方程的一条总线:
用 i 位置之前或者之后的状态,推导 dp[i] 的值
如i之前状态 dp[i-2]、dp[i-1],i之后状态 dp[i+1],dp[i+2]

如何推导出dp[i]的值呢?
根据最近的一步,来划分问题

i位置表示到达楼梯的最小花费,它最近一步是不是支付完i位置的费用,往后走一步到i-1的位置,然后从i-1位置出发到楼顶。或者是往后走两步到i-2的位置。然后从i-2位置出发到楼顶。接下来看这两种情况能不能用之前的状态表示一下

支付cost[i]是固定的,我想让第一种情况最小我得让i+1位置最小,我得知道从i+1位置出发到i位置最小花费。dp[i+1]表示从i+1位置出发,到达楼顶,此时最小花费,然后加上cost[i] 就是第一种情况最小花费。同理dp[i+2]表示从i+1位置出发,到达楼顶,此时最小花费加上cost[i] 就是第二种情况最小花费。然后在取这两种情况中最小花费。

在这里插入图片描述

3.初始化

因为我们是从某一个位置到楼顶,所以dp数组不需要额外在开一个位置。直接跟原始数组一样大就可以了。

其次我们需要先知道i+1的位置和i+2的位置才能知道dp[i]的值,因此先把最后两个位置初始化

在这里插入图片描述

4.填表顺序

知道后面两个位置的值,就可以得到前面的值,因此从右往左
在这里插入图片描述

5.返回值

我们最开始要么是从0开始,要是是从1开始。所以返回的是dp[0],dp[1]中的最小值。

在这里插入图片描述

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {// 1.创建dp表// 2.初始化// 3.填表// 4.返回// 解法一// int n = cost.size();// vector<int> dp(n+1);// //dp[0] = dp[1] = 0;// for(int i = 2; i <= n; ++i)//     dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);// return dp[n];   // 解法二int n = cost.size();vector<int> dp(n);dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2];for(int i = n - 3; i >= 0; --i)dp[i] = min(dp[i + 1] + cost[i], dp[i + 2] + cost[i]);return min(dp[0], dp[1]);}
};

4.解码方法

题目链接:91. 解码方法

题目分析:

在这里插入图片描述

A-Z --> 1-26,将一个经过编码的只包含数字的字符串解码看有多少种解码方式。

注意这样的情况 “06”,不仅不能每个单独编码,也不能合在一起进行编码。
‘0’ 不在 ‘1-9’ 范围内,‘06’ 不在 ‘10-26’ 范围内。同样"60"也不单独编码和合在一起编码。

在这里插入图片描述
算法原理:

1.状态表示

经验+题目要求
以 i 位置为结尾,巴拉巴拉。
接下来根据题目要求替换巴拉巴拉。
题目要求求s字符串有多少种解码方法。是不是就从从开始到结尾的解码总数。那dp[i]就可以这样表示。
dp[i]表示,以 i 位置为结尾时,解码方法的总数。

在这里插入图片描述

2.状态转移方程

根据i状态最近的一步,来划分问题
最近一步就是解码到i位置的时候,解码到i位置有两种情况,i位置单独解码,i-1和i位置合在一起解码。因为是以i位置为结尾的,所有i+1位置还没有到,暂时不考虑。

但是解码并不是你想解码就解码,必须要符合条件,否则不能解码。所有单独解码和合在一起解码都有成功或者失败的可能。

s[i] 单独解码
解码成功 s[i] 必须在 ‘1’ - ‘9’ 范围内,解码成功要的是总数,i位置解码成功,是不是前面 0到i-1位置 解码成功的所有情况后面在添加一个 i 位置的字符就行了。而 0到i-1位置 解码成功的所有情况 dp[i-1] 不就是吗。

解码失败 s[i] 不在 ‘1’ - ‘9’ 范围内,那以 i 位置为结尾就没有解码方案数了,就如"60"这种情况。前面不管有多少种解码方案那s[i]失败,那整个就没有解码方案。我们要的是整体的解码方案。

s[i-1] 和 s[i] 合一起解码
解码成功 把s[i-1] 和 s[i] 放在一起解码成功,条件是10 <= b*10+a <= 26,为什么不是1-26呢?因为 01到09没有这种情况,所以只能是10到26。解码成功方案数合上面类似 0到i-2所有解码方案后面添加上s[i-1]合s[i]在一起的解码就行了。dp[i-2]。

解码失败 同理最后一个位置解码失败,不管前面怎么样,整体解码方案就是0

在这里插入图片描述

3.初始化

因为会用到i-1和i-2所以要对0和1初始化。
在这里插入图片描述

4.填表顺序

填dp[i]要知道dp[i-1]和dp[i-2]的位置,所以从左到右

5.返回值

dp[i]表示以 i 位置为结尾时,解码方法的总数,题目要求求整个字符串所有解码方案,所以返回的是dp[n-1]。

class Solution {
public:int numDecodings(string s) {// 1.创建dp表// 2.初始化// 3.填表// 4.返回值int n = s.size();vector<int> dp(n);dp[0] = s[0] != '0';//处理边界情况if(n == 1) return dp[0];if(s[0] != '0' && s[1] != '0')dp[1] += 1;int tmp = (s[0] - '0') * 10 + s[1] - '0'; //前两个位置表示的数if(tmp >= 10 && tmp <= 26)dp[1] += 1;for(int i = 2; i < n; ++i){if(s[i] != '0') dp[i] += dp[i - 1];//处理单独编码的情况int tmp = (s[i - 1] - '0') * 10 + s[i] - '0';//处理合在一起编码的情况if(tmp >= 10 && tmp <= 26)dp[i] += dp[i - 2];} return dp[n-1];}
};

之前写的dp代码都比较短,但是这里的dp初始化为什么这么长并且,部分初始化代码和填表中代码类似,有没有可能写在一起?使代码编码简洁,是有的。

细节问题:

做dp问题的时候,会经常处理比较繁琐的边界情况以及初始化。为了能更好的处理这些情况,对于一维数组我们可以把整个数组统一往后移动一位,也就是数组多开一个位置的技巧。

处理边界问题以及初始化问题的技巧
数组多开一个位置

之前旧dp表中的位置的值要在新的dp表中对应位置往后放一个。
在这里插入图片描述
多出来的位置我们称为虚拟位置。多出来这个位置的作用,前面在旧的dp表要初始化0和1位置,在新dp表中虽然也初始化0和1的位置,但是确是方便了不少。

之前旧dp表初始化1的位置非常麻烦。现在旧表中1的位置跑到新dp表中1填表的下标里面了。我在新dp表中填表中就把旧dp表中1的位置干掉了。这样就非常爽了。
在这里插入图片描述

但是却有两个注意事项:

  1. 虚拟节点里面的值,要保证后面填表是正确的
  2. 下标的映射关系

虚拟节点里面的值,要保证后面填表是正确的

比如新dp表中,填表时的 dp[2] = dp[1] + dp[0],dp[1]是不会错误的因为它的初始化是和旧dp[0]是一样的。但是dp[0]是我们构建出来的,它里面值存放多少是不是就会影响到dp[2]的值。

一般情况下,这个虚拟节点的值存的是 0 ,但是这道题就不一样了,dp[0]里面存0是不正确的。求dp[2]如果用到dp[0],是不是就是1和2的位置合在一起能解码成功,然后我才加上dp[0],如果dp[0]是0那不就是少加了一种情况吗。因此这个dp[0]填1

在这里插入图片描述

总体来说就是具体问题具体分析!看虚拟节点的值到底填几。

下标的映射关系

在新dp表中,初始化dp[1]的时候,看的是s[0]这个位置能否解码成功,对应就是s[1-1] != ‘0’。因为我们多加个一个位置,下标统一往后移动一位,如果还想和之前一样找之前位置这里 s[i] 就必须多加一个 -1 的操操作。

class Solution {
public:int numDecodings(string s) {// 1.创建dp表// 2.初始化// 3.填表// 4.返回值//优化后int n = s.size();vector<int> dp(n+1);dp[0] = 1; // 保证后面填表是正确的 dp[1] = s[1-1] != '0';for(int i = 2; i <= n; ++i){if(s[i - 1] != '0') dp[i] += dp[i - 1];//处理单独编码的情况int tmp = (s[i - 2] - '0') * 10 + s[i - 1] - '0';//处理合在一起编码的情况if(tmp >= 10 && tmp <= 26)dp[i] += dp[i - 2];}return dp[n];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/41042.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[k8s生产系列]:k8s集群故障恢复,etcd数据不一致,kubernetes集群异常

文章目录 摘要1 背景说明2 故障排查2.1 查询docker与kubelet状态2.2 查看kubelet服务日志2.3 重启docker与kubelet服务2.3.1 首先kubelet启动起来了&#xff0c;但是报错master节点找不到2.3.2 查询kubernetes集群服务&#xff0c;发现etcd与kube-apiserver均启动异常 2.4 etcd…

【Pyhton】读取寄存器数据到MySQL数据库

目录 步骤 modsim32软件配置 Navicat for MySQL 代码实现 步骤 安装必要的库&#xff1a;确保安装了pymodbus和pymysql。 配置Modbus连接&#xff1a;设置Modbus从站的IP地址、端口&#xff08;对于TCP&#xff09;或串行通信参数&#xff08;对于RTU&#xff09;。 连接M…

公用对象池

什么是对象池&#xff1f; 对象池顾名思义就是存放对象的池子&#xff0c;主要是为了重复利用对象。将不用的对象扔进池子里&#xff0c;需要用的时候再从池子中取出来。这样的一套机制我们称为对象池。 为什么用对象池&#xff1f; 其实从定义我们就可以看出来&#xff0c;…

算法金 | 我最常用的两个数据可视化软件,强烈推荐

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 抱个拳&#xff0c;送个礼 预警&#xff1a;今天文章的描述可能会让你有点别扭&#xff1b;如感到不适&#xff0c;请及时停止 在我行…

MacOS 安装 mtr 网络检测工具

Install sudo brew install mtr sudo chown root $(which mtr) sudo chmod us $(which mtr) sudo chown root $(which mtr-packet) sudo chmod us $(which mtr-packet) Test mtr google.com

C# WPF 3D 数据孪生 系列六

数字孪生应用开发 应用开发中的布局需求 Grid基本使用 WPF 3D绘图 点云 系列五-CSDN博客 WPF UI 3D 多轴 机械臂 stl 模型UI交互-CSDN博客 WPF UI 3D 基本概念 点线三角面 相机对象 材质对象与贴图 3D地球 光源 变形处理 动作交互 辅助交互插件 系列三-CSDN博客 数字孪生 介…

015-GeoGebra基础篇-定点旋转物体、动态显示数值并显示运动轨迹

这可能是我能想到的最大概率可以被你搜索到的标题了&#xff0c;容我先喘口气~ 目录 一、成品展示二、涉及内容三、做图步骤&#xff08;1&#xff09;绘制三角形t&#xff08;2&#xff09;建立定点D&#xff08;3&#xff09;制作角度滑动条&#xff08;4&#xff09;图形绕点…

嵌入式Linux系统编程 — 6.7 实时信号

目录 1 什么是实时信号 2 sigqueue函数 3 sigpending()函数 1 什么是实时信号 等待信号集只是一个掩码&#xff0c;它并不追踪信号的发生次数。这意味着&#xff0c;如果相同的信号在被阻塞的状态下多次产生&#xff0c;它只会在信号集中被记录一次&#xff0c;并且在信号集…

Windows 下用MSYS2 环境为RP2040 编译MicroPython 固件

就是想试试看MSYS2 能兼容到什么地步。自己做了个RP2040 板子&#xff0c;用了4MB 的Flash&#xff0c;默认的Micropython 固件是2MB 的&#xff0c;所以只能自己编译固件。 编译环境 MSYS2 的安装方法、基本配置什么的我就不管了&#xff0c;到处都有文章介绍这个。只提一点…

mac视频压缩简单办法,mac如何把视频压缩到指定大小内存

在数字时代&#xff0c;视频已成为我们日常生活和工作的重要交流工具。然而&#xff0c;视频文件体积庞大&#xff0c;给存储和分享带来了不少困扰。本文将为你揭秘视频压缩的秘密&#xff0c;让你轻松减小视频文件体积&#xff0c;提升分享效率&#xff01; 方法一下载文件压缩…

Vue3实现过渡动画

认识动画 在开发中&#xff0c;我们想要给一个组件的显示和消失添加某种过渡动画&#xff0c;可以很好的增加用户体验&#xff1a; React框架本身并没有提供任何动画相关的API&#xff0c;所以在React中使用过渡动画我们需要使用一个第三方库 react-transition-group&#xf…

【高中数学/极值问题】一条长为L的绳子,一面靠墙,另外三边组成矩形,问此矩形最大面积能是多少?

【问题】 一条长为L的绳子&#xff0c;一面靠墙&#xff0c;另外三边组成矩形&#xff0c;问此矩形最大面积能是多少&#xff1f; 【示意图】 【解析式】 设垂直于墙的两边长为x&#xff0c;则墙对边长为L-2x&#xff0c;围成的矩形面积Sx(L-2x) 写成标准的解析式为yx(L-2…

本地Windows电脑 连接 Windows 服务器

Windows电脑 连接 Windows 服务器 方式1&#xff1a;直接搜索 在电脑的搜索栏&#xff0c;输入“远程桌面连接” 可以选择点击 “打开” 或者直接按 回车键 “Enter”&#xff0c;打开 远程桌面连接 方式2&#xff1a;运行框打开服务器连接 同时按&#xff1a;Windows徽标键…

java+springboot+Mysql“友书”综合书籍平台系统24489-计算机毕业设计项目选题推荐(附源码)

摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;“友书”综合书籍平台当然也不能排除在外。“友书”综合书籍平台系统是以实际运用为开发背景&#xff0c;运用软件工程原…

搜维尔科技:详谈ART的工具追踪技术

您的生产流程中是否已经受益于刀具跟踪系统&#xff1f;您是否意识到它们的价值&#xff1f;因为它们可以优化您的装配顺序&#xff0c;从而节省您的时间和金钱。 目前我们提供两种工具跟踪解决方案&#xff1a; 1.ART与 VERPOSE的解决方案——易于使用的图像识别 安装在工…

UE5 05-利用 timeline 插值运动

理解成 unity Dotween DoMove 插值运动即可 AddTimeLine 节点 物体插值运动 物体插值缩放 一个timeline 可以K多个动画帧

基于STM32F103C8T6的同步电机驱动-CubeMX配置与IQmath调用

基于STM32F103C8T6的同步电机驱动-CubeMX配置与IQmath调用 一、功能描述: 上位机通过CAN总线实现对电机的运动控制,主要包含三种模式:位置模式、速度模式以及力矩模式。驱动器硬件核心为STM32F103C8T6,带相电压采集电路以及母线电压采集电路。其中供电电压12V。 PWM中心对…

DT浏览器很好用

DT浏览器是一款简单的浏览器&#xff0c;又是强大的浏览器&#xff0c;界面简洁大方&#xff0c;软件使用流畅。DT浏览器的网址收藏&#xff0c;人工智能写作&#xff0c;书法笔记等功能与众不同。DT浏览器的图文识别功能和笔记本搭配使用&#xff0c;可以对内容编辑修改和保存…

RestTemplate、MockMVC、Swagger

rest代码风格 硬编码的部分在实际开发中都是会替换成枚举对象 SpringMVC会自动把json格式的post请求转化为对应接收的 对象 响应请求时&#xff0c;也会自动把 对象转化为 json格式的 RestTemplate 浏览器的地址栏只能提供get请求访问后端&#xff0c;如果要使用post方式发送…

[A-03] ARMv8/ARMv9-多级Cache架构

ver 0.1 前言 前面文章我介绍了Cache的基本架构、Cache的详细的结构&#xff0c;有了一定的cache的基础&#xff0c;对cache机制也有了sense。实际上Cache作为CPU架构中存储机制的核心组件和CPU的微架构以及系统的总线架构还是密切相关的&#xff0c;不同的体系下&#xff0c…